Atomic delay in helium, neon, argon and krypton

被引:92
作者
Palatchi, Caryn [1 ]
Dahlstrom, J. M. [2 ,3 ,4 ,5 ]
Kheifets, A. S. [5 ]
Ivanov, I. A. [5 ]
Canaday, D. M. [1 ]
Agostini, P. [1 ]
DiMauro, L. F. [1 ]
机构
[1] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
[2] Stockholm Univ, AlbaNova Univ Ctr, Dept Phys, SE-10691 Stockholm, Sweden
[3] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[4] Ctr Free Electron Laser Sci, D-22761 Hamburg, Germany
[5] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会; 瑞典研究理事会;
关键词
attosecond; delay; photoionization; PHOTOIONIZATION; AR;
D O I
10.1088/0953-4075/47/24/245003
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photoionization by an eXtreme UltraViolet (XUV) attosecond pulse train (APT) in the presence of an infrared pulse (RABBITT method) conveys information about the atomic photoionization delay. By taking the difference of the spectral delays between pairs of rare gases (Ar,He), (Kr,He) and (Ne,He) it is possible to eliminate in each case the larger group delay ('attochirp') associated with the APT itself and obtain the Ar, Kr and Ne Wigner delays referenced to model calculations of the He delay. In this work we measure how the delays vary as a function of XUV photon energy but we cannot determine the absolute delay difference between atoms due to lack of precise knowledge of the initial conditions. The extracted delays are compared with several theoretical predictions and the results are consistent within 30 as over the energy range from 10 to 50 eV. An 'effective' Wigner delay over all emission angles is found to be more consistent with our angle-integrated measurement near the Cooper minimum in Ar. We observe a few irregular features in the delay that may be signatures of resonances.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Full electron description of antiproton collisions with neon and argon atoms in the keV energy range [J].
Jia, C. C. ;
Gao, J. W. ;
Wu, Y. ;
Wang, J. G. ;
Sisourat, N. .
PHYSICAL REVIEW A, 2024, 110 (01)
[22]   Single-photon and multi-photon Fano lines for helium and neon using <monospace>tRecX-haCC</monospace> [J].
Chundayil, Hareesh ;
Scrinzi, Armin ;
Pramod Majety, Vinay .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2024, 57 (22)
[23]   Excited-State Positronium Formation from Helium, Argon, and Xenon [J].
Murtagh, D. J. ;
Cooke, D. A. ;
Laricchia, G. .
PHYSICAL REVIEW LETTERS, 2009, 102 (13)
[24]   Kinetics of high pressure argon-helium pulsed gas discharge [J].
Emmons, D. J. ;
Weeks, D. E. .
JOURNAL OF APPLIED PHYSICS, 2017, 121 (20)
[25]   Thermophysical properties of carbon-argon and carbon-helium plasmas [J].
Wang, WeiZong ;
Rong, MingZhe ;
Murphy, Anthony B. ;
Wu, Yi ;
Spencer, Joseph W. ;
Yan, Joseph D. ;
Fang, Michael T. C. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (35)
[26]   Magnetic field-free measurements of the total cross section for positrons scattering from helium and krypton [J].
Fayer, S. E. ;
Loreti, A. ;
Andersen, S. L. ;
Koever, A. ;
Laricchia, G. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2016, 49 (07)
[27]   Study of Inner-Shell Excitation and Relaxation Processes in Atomic and Ionic Neon by Means of Soft X-Ray Spectroscopy [J].
Oura, M. .
PLASMA SCIENCE & TECHNOLOGY, 2010, 12 (03) :353-360
[28]   Rotational excitation of AlH by Helium and Neon at low temperature: State-to-state inelastic cross section [J].
Pamboundom, M. ;
Fifen, J. J. ;
Nkem, C. ;
Nsangou, M. .
CHEMICAL PHYSICS LETTERS, 2014, 600 :21-28
[29]   Spectroscopy of the Ca Dimer on Argon and Helium Clusters by Laser Induced Fluorescence at 380 nm [J].
Gaveau, M. A. ;
Briant, M. ;
Pothier, C. ;
Fournier, P. R. ;
Mestdagh, J. M. .
RAREFIED GAS DYNAMICS, 2009, 1084 :577-582
[30]   Emission Characteristics of Pulse-Periodic Barrier-Discharge Plasma in a Mixture of Krypton with Argon and Liquid Freon Vapor [J].
Shuaibov, A. K. ;
Minya, A. I. ;
Gritsak, R. V. ;
Gomoki, Z. T. .
OPTICS AND SPECTROSCOPY, 2014, 116 (02) :212-215