A Tumor-Specific Cascade Amplification Drug Release Nanoparticle for Overcoming Multidrug Resistance in Cancers

被引:300
作者
Ye, Mingzhou [1 ,2 ]
Han, Yuxin [1 ]
Tang, Jianbin [1 ]
Piao, Ying [1 ]
Liu, Xiangrui [1 ]
Zhou, Zhuxian [1 ]
Gao, Jianqing [2 ]
Rao, Jianghong [3 ]
Shen, Youqing [1 ]
机构
[1] Zhejiang Univ, Key Lab Biomass Chem Engn, Minist Educ, Ctr Bionanoengn,Coll Chem & Biol Engn, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Inst Pharmaceut, Coll Pharmaceut Sci, Hangzhou 310058, Zhejiang, Peoples R China
[3] Stanford Univ, Sch Med, Mol Imaging Program, Stanford Dept Radiol, Stanford, CA 94305 USA
基金
中国国家自然科学基金;
关键词
-lapachone; anticancer prodrug; cascade amplification drug release; drug delivery; multidrug resistance; BETA-LAPACHONE; HYDROGEN-PEROXIDE; OXIDATIVE STRESS; P-GLYCOPROTEIN; DELIVERY; APOPTOSIS; DOXORUBICIN; NANOTHERAPEUTICS; NANOCARRIERS; ACTIVATION;
D O I
10.1002/adma.201702342
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A cascade amplification release nanoparticle (CARN) is constructed by the coencapsulation of -lapachone and a reactive-oxygen-species (ROS)-responsive doxorubicin (DOX) prodrug, BDOX, in polymeric nanoparticles. Releasing -lapachone first from the CARNs selectively increases the ROS level in cancer cells via NAD(P)H:quinone oxidoreductase-1 (NQO1) catalysis, which induces the cascade amplification release of DOX and overcomes multidrug resistance (MDR) in cancer cells, producing a remarkably improved therapeutic efficacy against MDR tumors with minimal side effects.
引用
收藏
页数:10
相关论文
共 48 条
[1]  
Albanese A, 2012, ANNU REV BIOMED ENG, V14, P1, DOI [10.1146/annurev-bioeng-071811-150124, 10.1146/annurev.bioeng-071811-150124]
[2]   Cellular titration of apoptosis with steady state concentrations of H2O2:: Submicromolar levels of H2O2 induce apoptosis through Fenton chemistry independent of the cellular thiol state [J].
Antunes, F ;
Cadenas, E .
FREE RADICAL BIOLOGY AND MEDICINE, 2001, 30 (09) :1008-1018
[3]   β-Lapachone Micellar Nanotherapeutics for Non-Small Cell Lung Cancer Therapy [J].
Blanco, Elvin ;
Bey, Erik A. ;
Khemtong, Chalermchai ;
Yang, Su-Geun ;
Setti-Guthi, Jagadeesh ;
Chen, Huabing ;
Kessinger, Chase W. ;
Carnevale, Kevin A. ;
Bornmann, William G. ;
Boothman, David A. ;
Gao, Jinming .
CANCER RESEARCH, 2010, 70 (10) :3896-3904
[4]   A Biocompatible Oxidation-Triggered Carrier Polymer with Potential in Therapeutics [J].
Broaders, Kyle E. ;
Grandhe, Sirisha ;
Frechet, Jean M. J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (04) :756-758
[5]   Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery [J].
Cheng, Ru ;
Meng, Fenghua ;
Deng, Chao ;
Klok, Harm-Anton ;
Zhong, Zhiyuan .
BIOMATERIALS, 2013, 34 (14) :3647-3657
[6]  
Choi Byung Tae, 2003, Anticancer Drugs, V14, P845
[7]   To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery [J].
Danhier, Fabienne ;
Feron, Olivier ;
Preat, Veronique .
JOURNAL OF CONTROLLED RELEASE, 2010, 148 (02) :135-146
[8]   Nanoparticle therapeutics: an emerging treatment modality for cancer [J].
Davis, Mark E. ;
Chen, Zhuo ;
Shin, Dong M. .
NATURE REVIEWS DRUG DISCOVERY, 2008, 7 (09) :771-782
[9]   Doxorubicin and Paclitaxel-Loaded Lipid-Based Nanoparticles Overcome Multidrug Resistance by Inhibiting P-Glycoprotein and Depleting ATP [J].
Dong, Xiaowei ;
Mattingly, Cynthia A. ;
Tseng, Michael T. ;
Cho, Moo J. ;
Liu, Yang ;
Adams, Val R. ;
Mumper, Russell J. .
CANCER RESEARCH, 2009, 69 (09) :3918-3926
[10]   Delivering nanomedicine to solid tumors [J].
Jain, Rakesh K. ;
Stylianopoulos, Triantafyllos .
NATURE REVIEWS CLINICAL ONCOLOGY, 2010, 7 (11) :653-664