Identifying how future climate and land use/cover changes impact streamflow in Xinanjiang Basin, East China

被引:79
|
作者
Guo, Yuxue [1 ]
Fang, Guohua [2 ]
Xu, Yue-Ping [1 ]
Tian, Xin [3 ]
Xie, Jingkai [1 ]
机构
[1] Zhejiang Univ, Inst Hydrol & Water Resources Civil Engn & Archit, Hangzhou 310058, Peoples R China
[2] Hohai Univ, Coll Water Conservancy & Hydropower Engn, Nanjing 210098, Peoples R China
[3] Delft Univ Technol, Fac Civil Engn & Geosci, Dept Water Management, NL-2623 CN Delft, Netherlands
关键词
Multiple scenarios; Climate change; Land use/cover change; Streamflow response; Uncertainty; Attribution; RIVER-BASIN; RUNOFF PROJECTIONS; USE/LAND COVER; WATER-QUALITY; CA-MARKOV; MODEL; URBANIZATION; CATCHMENT; UNCERTAINTY; HYDROLOGY;
D O I
10.1016/j.scitotenv.2019.136275
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Climate and land use/cover changes are the main factors altering hydrological regimes. To understand the impacts of climate and land use/cover changes on streamflow within a specific catchment, it is essential to accurately quantify their changes given many possibilities. We propose an integrated framework to assess how individual and combined climate and land use/cover changes impact the streamflow of Xinanjiang Basin, in East China, in the future. Five bias-corrected and downscaled General Circulation Model (GCM) projections are used to indicate the inter-model uncertainties under three Representative Concentration Pathways (RCPs). Additionally, three land use/cover change scenarios representing a range of tradeoffs between ecological protection (EP) and urban development (UD) are projected by Cellular Automata - Markov (CA-Markov). The streamflow in 2021-2050 is then assessed using the calibrated Soil and Water Assessment Tool (SWAT) with 15 scenarios and 75 possibilities. Finally, the uncertainty and attribution of streamflow changes to climate and land use/cover changes at monthly and annual scale are analyzed. Results show that while both land use/cover change alone and combined changes project an increase in streamflow, there is a disagreement on the direction of streamflow change under climate change alone. Future streamflow may undergo a more blurred boundary between the flood and non-flood seasons, potentially easing the operation stress of Xinanjiang Reservoir for water supply or hydropower generation. We find that the impacts of climate and land use/cover changes on monthly mean streamflow are sensitive to the impermeable area (IA).The impacts of climate change are stronger than those induced by land use/cover change under EP (i.e., lower IA); and land use/cover change has a greater impact in case of UD (i.e., higher IA). However, changes in annual mean streamfiow are mainly driven by land use/cover change, and climate change may decrease the influence attributed to land use/cover change. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Impacts of future land cover and climate changes on runoff in the mostly afforested river basin in North China
    Yang, Wenting
    Long, Di
    Bai, Peng
    JOURNAL OF HYDROLOGY, 2019, 570 : 201 - 219
  • [32] Hydrological impacts of future climate and land use/cover changes in the Lower Mekong Basin: a case study of the Srepok River Basin, Vietnam
    Pham Thi Thao Nhi
    Dao Nguyen Khoi
    Nguyen Thi Thuy Trang
    Tran Van Ty
    Fang, Shibo
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2022, 194 (SUPPL 2)
  • [33] Hydrological impacts of future climate and land use/cover changes in the Lower Mekong Basin: a case study of the Srepok River Basin, Vietnam
    Pham Thi Thao Nhi
    Dao Nguyen Khoi
    Nguyen Thi Thuy Trang
    Tran Van Ty
    Shibo Fang
    Environmental Monitoring and Assessment, 2022, 194
  • [34] Combined Effects of Land Use/Cover Change and Climate Change on Runoff in the Jinghe River Basin, China
    Liu, Yu
    Guan, Zilong
    Huang, Tingting
    Wang, Chenchao
    Guan, Ronghao
    Ma, Xiaoyi
    ATMOSPHERE, 2023, 14 (08)
  • [35] Potential impacts of land use/cover and climate changes on ecologically relevant flows
    Dosdogru, Furkan
    Kalin, Latif
    Wang, Ruoyu
    Yen, Haw
    JOURNAL OF HYDROLOGY, 2020, 584
  • [36] Runoff Responses to Climate and Land Use/Cover Changes under Future Scenarios
    Pan, Sihui
    Liu, Dedi
    Wang, Zhaoli
    Zhao, Qin
    Zou, Hui
    Hou, Yukun
    Liu, Pan
    Xiong, Lihua
    WATER, 2017, 9 (07)
  • [37] Relative impact of recent climate and land cover changes in the Godavari river basin, India
    Hengade, Narendra
    Eldho, T. I.
    JOURNAL OF EARTH SYSTEM SCIENCE, 2019, 128 (04)
  • [38] Effects of land use changes on streamflow generation in the Rhine basin
    Hurkmans, R. T. W. L.
    Terink, W.
    Uijlenhoet, R.
    Moors, E. J.
    Troch, P. A.
    Verburg, P. H.
    WATER RESOURCES RESEARCH, 2009, 45
  • [39] Individual and combined effects of land use/cover and climate change on Wolf Bay watershed streamflow in southern Alabama
    Wang, Ruoyu
    Kalin, Latif
    Kuang, Wenhui
    Tian, Hanqin
    HYDROLOGICAL PROCESSES, 2014, 28 (22) : 5530 - 5546
  • [40] Future climate change impacts on streamflow and nitrogen exports based on CMIP5 projection in the Miyun Reservoir Basin, China
    Yan, Tiezhu
    Bai, Jianwen
    Arsenio, Toloza
    Liu, Jin
    Shen, Zhenyao
    ECOHYDROLOGY & HYDROBIOLOGY, 2019, 19 (02) : 266 - 278