Mitigating Ring-Opening to Develop Stable TEMPO Catholytes for pH-Neutral All-organic Redox Flow Batteries

被引:45
作者
Fan, Hao [1 ]
Wu, Wenda [2 ]
Ravivarma, Mahalingam [1 ]
Li, Hongbin [1 ]
Hu, Bo [1 ]
Lei, Jiafeng [1 ]
Feng, Yangyang [1 ]
Sun, Xiaohua [3 ]
Song, Jiangxuan [1 ]
Liu, Tianbiao Leo [2 ]
机构
[1] Xi An Jiao Tong Univ, Shaanxi Int Res Ctr Soft Matter, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[2] Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA
[3] China Three Gorges Univ, Coll Mat & Chem Engn, Yichang 443002, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
energy storage; nitroxyl radicals; organic catholytes; redox flow batteries; ELECTRODE-REACTION; LONG-LIFETIME; ENERGY; CAPACITY; ANOLYTE;
D O I
10.1002/adfm.202203032
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Redox-active organics are highly attractive in aqueous organic redox flow batteries (AORFBs). However, the lack of capacity dense, stable organic catholytes remains a challenge to develop energy-dense, long cycle-life AORFBs. Herein, a stable organic catholyte, 4-[3-(trimethylammonium)acetylamino]-2,2,6,6-tetramethylpiperidine-1-oxyl chloride (TMAAcNHTEMPO) is developed through rational molecular engineering using connective acetamido and trimethylammonium groups. Paired with bis-(trimethylammonium) propyl viologen tetrachloride anolyte, stable AORFBs (up to 1500 cycles) with a low capacity fade rate of ca. 0.0144% h(-1) are achieved. Experimental characterizations and theoretical simulations revealed that TMAAcNH-TEMPO is largely stabilized by the reduced reactivity of the nitroxyl radical moiety that mitigates a ring-opening side reaction.
引用
收藏
页数:9
相关论文
共 41 条
[1]  
[Anonymous], 2011, ARPAE GRIDS PROGRAM
[2]   A Neutral pH Aqueous Organic-Organometallic Redox Flow Battery with Extremely High Capacity Retention [J].
Beh, Eugene S. ;
De Porcellinis, Diana ;
Gracia, Rebecca L. ;
Xia, Kay T. ;
Gordon, Roy G. ;
Aziz, Michael J. .
ACS ENERGY LETTERS, 2017, 2 (03) :639-644
[3]   A Sulfonate-Functionalized Viologen Enabling Neutral Cation Exchange, Aqueous Organic Redox Flow Batteries toward Renewable Energy Storage [J].
DeBruler, Camden ;
Hu, Bo ;
Moss, Jared ;
Luo, Jian ;
Liu, T. Leo .
ACS ENERGY LETTERS, 2018, 3 (03) :663-668
[4]   Designer Two-Electron Storage Viologen Anolyte Materials for Neutral Aqueous Organic Redox Flow Batteries [J].
DeBruler, Camden ;
Hu, Bo ;
Moss, Jared ;
Liu, Xuan ;
Luo, Jian ;
Sun, Yujie ;
Liu, T. Leo .
CHEM, 2017, 3 (06) :961-978
[5]   A high-performance all-metallocene-based, non-aqueous redox flow battery [J].
Ding, Yu ;
Zhao, Yu ;
Li, Yutao ;
Goodenough, John B. ;
Yu, Guihua .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (02) :491-497
[6]   Radical Charge Population and Energy: Critical Role in Redox Potential and Cycling Life of Piperidine Nitroxyl Radical Cathodes in Aqueous Zinc Hybrid Flow Batteries [J].
Fan, Hao ;
Zhang, Jiahui ;
Ravivarma, Mahalingam ;
Li, Hongbin ;
Hu, Bo ;
Lei, Jiafeng ;
Feng, Yangyang ;
Xiong, Shizhao ;
He, Cheng ;
Gong, Jianying ;
Gao, Tieyu ;
Song, Jiangxuan .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (39) :43568-43575
[7]   Recent Advances in Aqueous Zinc-Ion Batteries [J].
Fang, Guozhao ;
Zhou, Jiang ;
Pan, Anqiang ;
Liang, Shuquan .
ACS ENERGY LETTERS, 2018, 3 (10) :2480-2501
[8]   Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries [J].
Feng, Ruozhu ;
Zhang, Xin ;
Murugesan, Vijayakumar ;
Holias, Aaron ;
Chen, Ying ;
Shao, Yuyan ;
Walter, Eric ;
Wellala, Nadeesha P. N. ;
Yan, Litao ;
Rosso, Kevin M. ;
Wang, Wei .
SCIENCE, 2021, 372 (6544) :836-+
[9]   Anthraquinone Derivatives in Aqueous Flow Batteries [J].
Gerhardt, Michael R. ;
Tong, Liuchuan ;
Gomez-Bombarelli, Rafael ;
Chen, Qing ;
Marshak, Michael P. ;
Galvin, Cooper J. ;
Aspuru-Guzik, Alan ;
Gordon, Roy G. ;
Aziz, Michael J. .
ADVANCED ENERGY MATERIALS, 2017, 7 (08)
[10]   A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries [J].
Hollas, Aaron ;
Wei, Xiaoliang ;
Murugesan, Vijayakumar ;
Nie, Zimin ;
Li, Bin ;
Reed, David ;
Liu, Jun ;
Sprenkle, Vincent ;
Wang, Wei .
NATURE ENERGY, 2018, 3 (06) :508-514