A relaxation result for energies defined on pairs set-function and applications

被引:30
作者
Braides, Andrea
Chambolle, Antonin
Solci, Margherita
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Ecole Polytech, CMAP, F-91128 Palaiseau, France
[3] Univ Sassari, DAP, I-07041 Alghero, Italy
关键词
relaxation; free discontinuity problems; Gamma-convergence;
D O I
10.1051/cocv:2007032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider, in an open subset Omega of R-N, energies depending on the perimeter of a subset E is an element of Omega ( or some equivalent surface integral) and on a function u which is defined only on Omega\E. We compute the lower semicontinuous envelope of such energies. This relaxation has to take into account the fact that in the limit, the "holes" E may collapse into a discontinuity of u, whose surface will be counted twice in the relaxed energy. We discuss some situations where such energies appear, and give, as an application, a new proof of convergence for an extension of Ambrosio-Tortorelli's approximation to the Mumford- Shah functional.
引用
收藏
页码:717 / 734
页数:18
相关论文
共 22 条
[1]   Wetting of rough surfaces: a homogenization approach [J].
Alberti, G ;
DeSimone, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2053) :79-97
[2]   APPROXIMATION OF FUNCTIONALS DEPENDING ON JUMPS BY ELLIPTIC FUNCTIONALS VIA GAMMA-CONVERGENCE [J].
AMBROSIO, L ;
TORTORELLI, VM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) :999-1036
[3]  
AMBROSIO L, 1990, J MATH PURE APPL, V69, P285
[4]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[5]  
[Anonymous], T CONVERGENCE BEGINN
[6]   Some results on surface measures in calculus of variations. [J].
Bellettini, G ;
Paolini, M ;
Venturini, S .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1996, 170 :329-357
[7]   Computing the equilibrium configuration of epitaxially strained crystalline films [J].
Bonnetier, E ;
Chambolle, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (04) :1093-1121
[8]  
BOUCHITTE G, 1995, J REINE ANGEW MATH, V458, P1
[9]  
BOUCHITTE G, 1994, MOTION BY MEAN CURVATURE AND RELATED TOPICS, P23
[10]  
Bourdin B, 2000, NUMER MATH, V85, P609, DOI 10.1007/s002110000099