Verification Platform of SOC Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles

被引:3
|
作者
Xia, Bizhong [1 ]
Zhang, Guanyong [1 ]
Chen, Huiyuan [1 ]
Li, Yuheng [1 ]
Yu, Zhuojun [1 ]
Chen, Yunchao [1 ]
机构
[1] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion batteries; state of charge; verification platform; hardware structure; software system; STATE-OF-CHARGE; PACK; HEALTH;
D O I
10.3390/en15093221
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
As one of the core technologies of electric vehicles (EVs), the state of charge (SOC) estimation algorithm of lithium-ion batteries is directly related to the performance of the battery management system (BMS). Before EVs are put into the market, the SOC estimation algorithm must be tested and verified to ensure the reliability of the BMS and the safe operation of EVs. Therefore, this paper establishes a lithium-ion batteries' SOC estimation algorithm verification platform for the comprehensive performance evaluation and verification of the new SOC estimation algorithm. In addition, there are two schemes, including real-time SOC estimation verification and offline SOC estimation verification can be selected, which improve the reliability and efficiency of verification. Firstly, the design idea of the verification platform (the research and development purpose, functional requirements, and the overall design scheme) is introduced in detail. Secondly, the modular design idea is used to design the hardware structure of the verification platform, which mainly includes the BMS host module, BMS slave module, battery charger module, and electronic load module. Finally, the software system, including the communication architecture, the SOC reference standard and evaluation indexes of the algorithm, and the upper computer function and implementation is designed to realize the functions of the verification platform.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Degradation analysis of lithium-ion batteries in electric vehicles
    Cugnet, Mikael G.
    Grolleau, Sebastien
    Delaille, Arnaud
    Perrin, Marion
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [32] Electrothermal Modeling of Lithium-Ion Batteries for Electric Vehicles
    Yang, Zhuo
    Patil, Devendra
    Fahimi, Babak
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (01) : 170 - 179
  • [33] Derating strategies for lithium-ion batteries in electric vehicles
    Barreras, Jorge Varela
    Raj, Trishna
    Howey, David A.
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 4956 - 4961
  • [34] Recycling lithium-ion batteries from electric vehicles
    Gavin Harper
    Roberto Sommerville
    Emma Kendrick
    Laura Driscoll
    Peter Slater
    Rustam Stolkin
    Allan Walton
    Paul Christensen
    Oliver Heidrich
    Simon Lambert
    Andrew Abbott
    Karl Ryder
    Linda Gaines
    Paul Anderson
    Nature, 2019, 575 : 75 - 86
  • [35] Thermal management of lithium-ion batteries for electric vehicles
    Karimi, G.
    Li, X.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2013, 37 (01) : 13 - 24
  • [36] SoC Estimation for Lithium-ion Batteries: Review and Future Challenges
    Pablo Rivera-Barrera, Juan
    Munoz-Galeano, Nicolas
    Omar Sarmiento-Maldonado, Henry
    ELECTRONICS, 2017, 6 (04)
  • [37] SOC estimation for lithium-ion batteries based on a novel model
    Li, Jiabo
    Ye, Min
    Gao, Kangping
    Xu, Xinxin
    IET POWER ELECTRONICS, 2021, 14 (13) : 2249 - 2259
  • [38] An Online SOC and SOH Estimation Model for Lithium-Ion Batteries
    Huang, Shyh-Chin
    Tseng, Kuo-Hsin
    Liang, Jin-Wei
    Chang, Chung-Liang
    Pecht, Michael G.
    ENERGIES, 2017, 10 (04):
  • [39] A hybrid Kalman filter for SOC estimation of lithium-ion batteries
    Hao, Tianyun
    Ding, Jie
    Tu, Taotao
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5222 - 5227
  • [40] Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles
    Espedal, Ingvild B.
    Jinasena, Asanthi
    Burheim, Odne S.
    Lamb, Jacob J.
    ENERGIES, 2021, 14 (11)