A humidity-resistant, stretchable and wearable textile-based triboelectric nanogenerator for mechanical energy harvesting and multifunctional self-powered haptic sensing

被引:86
作者
Wang, Jiaxin [1 ]
He, Jinmei [1 ]
Ma, Lili [1 ]
Yao, Yali [1 ]
Zhu, Xuedan [1 ]
Peng, Lei [1 ]
Liu, Xiangrong [1 ]
Li, Kanshe [1 ]
Qu, Mengnan [1 ]
机构
[1] Xian Univ Sci & Technol, Coll Chem & Chem Engn, Xian 710054, Peoples R China
关键词
Smart electronic textiles; Self-powered haptic sensing; Superhydrophobicity; Triboelectric nanogenerators; Wearable human-machine interfaces; SENSORS;
D O I
10.1016/j.cej.2021.130200
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Textile-based triboelectric nanogenerators (t-TENGs) have attracted extensive attention in wearable power source and movement monitoring. However, the electrical output performance and environmental adaptability of t-TENGs in single-electrode mode are still unsatisfactory, which significantly limits their applications. This limitation is especially more pronounced in humid environments. In the present study, a humidity-resistant and stretchable single-electrode t-TENG (abbreviated as PFL@WFCF-TENG) consisting of the porous flexible layer (PFL) and waterproof flexible conductive fabric (WFCF) has been designed to improve the output performance. Considering the three-dimensional structure and excellent superhydrophobicity of PFL and superior conductivity of WFCF, the resultant PFL@WFCF-TENG (2 x 4 cm(2) area) has high outputs (similar to 135 V, similar to 7.5 mu A, 26 mu C/m(2) , 631.5 mW/m(2)) and favorable humidity-resistant (80% RH). Based on these excellent features, the proposed PFL@WFCF-TENG is expected to be applied for intelligent alarming, haptic sensing, and energy harvesting. Moreover, combined with the microelectronic module, a portable and wearable self-powered haptic controller based on the PFL@WFCF-TENG has been designed for various human-machine interface (HMI) scenarios, such as controlling of the lamp, electronic badge, computer application, and humidifier. The PFL@WFCF-TENG proposed in this study not only provides a feasible solution for developing wearable electronic devices with high electrical output even in high-humidity environments but also shows promising applications in a variety of areas, including wearable power supply, portable computer peripherals, intelligent robots and security systems.
引用
收藏
页数:10
相关论文
共 51 条
[1]   Self-powered gold nanowire tattoo triboelectric sensors for soft wearable human-machine interface [J].
An, Tiance ;
Anaya, David Vera ;
Gong, Shu ;
Yap, Lim Wei ;
Lin, Fenge ;
Wang, Ren ;
Yuce, Mehmet R. ;
Cheng, Wenlong .
NANO ENERGY, 2020, 77
[2]   Wearable sweat sensors [J].
Bariya, Mallika ;
Nyein, Hnin Yin Yin ;
Javey, Ali .
NATURE ELECTRONICS, 2018, 1 (03) :160-171
[3]   A Stretchable Highoutput Triboelectric Nanogenerator Improved by MXene Liquid Electrode with High Electronegativity [J].
Cao, Wen-Tao ;
Ouyang, Han ;
Xin, Wei ;
Chao, Shengyu ;
Ma, Chang ;
Li, Zhou ;
Chen, Feng ;
Ma, Ming-Guo .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (50)
[4]   Direct Current Fabric Triboelectric Nanogenerator for Biomotion Energy Harvesting [J].
Chen, Chaoyu ;
Guo, Hengyu ;
Chen, Lijun ;
Wang, Yi-Cheng ;
Pu, Xianjie ;
Yu, Weidong ;
Wang, Fumei ;
Du, Zhaoqun ;
Wang, Zhong Lin .
ACS NANO, 2020, 14 (04) :4585-4594
[5]   Transparent and stretchable bimodal triboelectric nanogenerators with hierarchical micro-nanostructures for mechanical and water energy harvesting [J].
Chen, Xiaoliang ;
Xiong, Jiaqing ;
Parida, Kaushik ;
Guo, Meiling ;
Wang, Cheng ;
Wang, Chao ;
Li, Xiangming ;
Shao, Jinyou ;
Lee, Pooi See .
NANO ENERGY, 2019, 64
[6]   Conductive Hierarchical Hairy Fibers for Highly Sensitive, Stretchable, and Water-Resistant Multimodal Gesture-Distinguishable Sensor, VR Applications [J].
Choi, Seunghoon ;
Yoon, Kukro ;
Lee, Sanggeun ;
Lee, Heon Joon ;
Lee, Jaehong ;
Kim, Da Wan ;
Kim, Min-Seok ;
Lee, Taeyoon ;
Pang, Changhyun .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (50)
[7]   Highly Surface-Embossed Polydimethylsiloxane-Based Triboelectric Nanogenerators with Hierarchically Nanostructured Conductive Ni-Cu Fabrics [J].
Choo, Dasong ;
Yang, Seungmo ;
Lee, Choonghyun ;
Kim, Woojong ;
Kim, Jaeho ;
Hong, Jinpyo .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (39) :33221-33229
[8]   Waterproof, Breathable, and Antibacterial Self-Powered e-Textiles Based on Omniphobic Triboelectric Nanogenerators [J].
de Medeiros, Marina Sala ;
Chanci, Daniela ;
Moreno, Carolina ;
Goswami, Debkalpa ;
Martinez, Ramses, V .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (42)
[9]   Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence [J].
Dong, Kai ;
Peng, Xiao ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2020, 32 (05)
[10]   Ultrathin, Rollable, Paper-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting and Self-Powered Sound Recording [J].
Fan, Xing ;
Chen, Jun ;
Yang, Jin ;
Bai, Peng ;
Li, Zhaoling ;
Wang, Zhong Lin .
ACS NANO, 2015, 9 (04) :4236-4243