Spectral propagation-based x-ray phase-contrast computed tomography

被引:1
|
作者
Schaff, Florian [1 ]
Pollock, James A. [1 ]
Morgan, Kaye S. [1 ]
Kitchen, Marcus J. [1 ,2 ]
机构
[1] Monash Univ, Sch Phys & Astron, Clayton, Vic, Australia
[2] Monash Univ, Ritchie Ctr, Clayton, Vic, Australia
基金
澳大利亚研究理事会;
关键词
x-ray phase contrast; computed tomography; spectral imaging; phase retrieval; electron density; effective atomic number; RETRIEVAL;
D O I
10.1117/1.JMI.9.3.031506
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Propagation-based x-ray imaging (PBI) is a phase-contrast technique that is employed in high-resolution imaging by introducing some distance between sample and detector. PBI causes characteristic intensity fringes that have to be processed with appropriate phase-retrieval algorithms, which has historically been a difficult task for objects composed of several different materials. Spectral x-ray imaging has been introduced to PBI to overcome this issue and to potentially utilize the spectral nature of the data for material-specific imaging. We aim to explore the potential of spectral PBI in three-dimensional computed tomography (CT) imaging in this work. Approach: We demonstrate phase-retrieval for experimental high-resolution spectral propagation-based CT data of a simple two-component sample, as well as a multimaterial capacitor test sample. Phase-retrieval was performed using an algorithm based on the Alvarez-Macovski model. Virtual monochromatic (VMI) and effective atomic number images were calculated after phase-retrieval. Results: Phase-retrieval results from the spectral data set show a distinct gray-level for each material with no residual phase-contrast fringes. Several representations of the phase-retrieved data are provided. The VMI is used to display an attenuation-equivalent image at a chosen display energy of 80 keV, to provide good separation of materials with minimal noise. The effective atomic number image shows the material composition of the sample. Conclusions: Spectral photon-counting detector technology has already been shown to be compatible with spectral PBI, and there is a foreseeable need for robust phase-retrieval in high-resolution, spectral x-ray CT in the future. Our results demonstrate the feasibility of phase-retrieval for spectral PBI CT. (C) 2022 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Material Decomposition Using Spectral Propagation-Based Phase-Contrast X-Ray Imaging
    Schaff, Florian
    Morgan, Kaye S.
    Pollock, James A.
    Croton, Linda C. P.
    Hooper, Stuart B.
    Kitchen, Marcus J.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (12) : 3891 - 3899
  • [2] Spectral propagation-based X-ray phase-contrast imaging
    Schaff, Florian
    Morgan, Kaye S.
    Paganin, David M.
    Kitchen, Marcus J.
    DEVELOPMENTS IN X-RAY TOMOGRAPHY XIII, 2021, 11840
  • [3] Registration of phase-contrast images in propagation-based X-ray phase tomography
    Weber, L.
    Haensch, A.
    Wolfram, U.
    Pacureanu, A.
    Cloetens, P.
    Peyrin, F.
    Rit, S.
    Langer, M.
    JOURNAL OF MICROSCOPY, 2018, 269 (01) : 36 - 47
  • [4] Noise propagation in x-ray phase-contrast imaging and computed tomography
    Nesterets, Yakov I.
    Gureyev, Timur E.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (10)
  • [5] Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging
    Baran, P.
    Pacile, S.
    Nesterets, Y. I.
    Mayo, S. C.
    Dullin, C.
    Dreossi, D.
    Arfelli, F.
    Thompson, D.
    Lockie, D.
    McCormack, M.
    Taba, S. T.
    Brun, F.
    Pinamonti, M.
    Nickson, C.
    Hall, C.
    Dimmock, M.
    Zanconati, F.
    Cholewa, M.
    Quiney, H.
    Brennan, P. C.
    Tromba, G.
    Gureyev, T. E.
    PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (06) : 2315 - 2332
  • [6] Noise texture and signal detectability in propagation-based x-ray phase-contrast tomography
    Chou, Cheng-Ying
    Anastasio, Mark A.
    MEDICAL PHYSICS, 2010, 37 (01) : 270 - 281
  • [7] Potential of propagation-based synchrotron X-ray phase-contrast computed tomography for cardiac tissue engineering
    Izadifar, Mohammad
    Babyn, Paul
    Chapman, Dean
    Kelly, Michael E.
    Chen, Xiongbiao
    JOURNAL OF SYNCHROTRON RADIATION, 2017, 24 : 842 - 853
  • [8] Propagation-based x-ray phase-contrast tomography of mastectomy samples using synchrotron radiation
    Gureyev, T. E.
    Nesterets, Ya. I.
    Baran, P. M.
    Taba, S. T.
    Mayo, S. C.
    Thompson, D.
    Arhatari, B.
    Mihocic, A.
    Abbey, B.
    Lockie, D.
    Fox, J.
    Kumar, B.
    Prodanovic, Z.
    Hausermann, D.
    Maksimenko, A.
    Hall, C.
    Peele, A. G.
    Dimmock, M.
    Pavlov, K. M.
    Cholewa, M.
    Lewis, S.
    Tromba, G.
    Quiney, H. M.
    Brennan, P. C.
    MEDICAL PHYSICS, 2019, 46 (12) : 5478 - 5487
  • [9] Spectral x-ray imaging: Conditions under which propagation-based phase-contrast is beneficial
    Schaff, Florian
    Morgan, Kaye S.
    Paganin, David M.
    Kitchen, Marcus J.
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (20)
  • [10] Optimisation of a propagation-based x-ray phase-contrast micro-CT system
    Nesterets, Yakov, I
    Gureyev, Timur E.
    Dimmock, Matthew R.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (11)