Thermal transport size effects in silicon membranes featuring nanopillars as local resonators

被引:46
作者
Honarvar, Hossein [1 ]
Yang, Lina [1 ]
Hussein, Mahmoud I. [1 ]
机构
[1] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
MOLECULAR-DYNAMICS; THERMOELECTRIC-MATERIALS; CONDUCTIVITY; NANOSTRUCTURES; NANOPHONONICS; SIMULATION; REDUCTION;
D O I
10.1063/1.4954739
中图分类号
O59 [应用物理学];
学科分类号
摘要
Silicon membranes patterned by nanometer-scale pillars standing on the surface provide a practical platform for thermal conductivity reduction by resonance hybridizations. Using molecular simulations, we investigate the effects of nanopillar size, unit-cell size, and finite-structure size on the net capacity of the local resonators in reducing the thermal conductivity of the base membrane. The results indicate that the thermal conductivity reduction increases as the ratio of the volumetric size of a unit nanopillar to that of the base membrane is increased, and the intensity of this reduction varies with unit-cell size at a rate dependent on the volumetric ratio. Considering sample size, the resonance-induced thermal conductivity drop is shown to increase slightly with the number of unit cells until it would eventually level off. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 35 条
[1]  
Appclbaum J. A., 1976, PHYS REV B, V14, P588
[2]   Phonon-boundary scattering in thin silicon layers [J].
Asheghi, M ;
Leung, YK ;
Wong, SS ;
Goodson, KE .
APPLIED PHYSICS LETTERS, 1997, 71 (13) :1798-1800
[3]   Nanophononics: Phonon engineering in nanostructures and nanodevices [J].
Balandin, AA .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2005, 5 (07) :1015-1022
[4]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[5]   Nanoscale thermal transport. II. 2003-2012 [J].
Cahill, David G. ;
Braun, Paul V. ;
Chen, Gang ;
Clarke, David R. ;
Fan, Shanhui ;
Goodson, Kenneth E. ;
Keblinski, Pawel ;
King, William P. ;
Mahan, Gerald D. ;
Majumdar, Arun ;
Maris, Humphrey J. ;
Phillpot, Simon R. ;
Pop, Eric ;
Shi, Li .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[6]   Recent developments in thermoelectric materials [J].
Chen, G ;
Dresselhaus, MS ;
Dresselhaus, G ;
Fleurial, JP ;
Caillat, T .
INTERNATIONAL MATERIALS REVIEWS, 2003, 48 (01) :45-66
[7]   Phonon heat conduction in nanostructures [J].
Chen, G .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2000, 39 (04) :471-480
[8]   Reconstructing phonon mean-free-path contributions to thermal conductivity using nanoscale membranes [J].
Cuffe, John ;
Eliason, Jeffrey K. ;
Maznev, A. A. ;
Collins, Kimberlee C. ;
Johnson, Jeremy A. ;
Shchepetov, Andrey ;
Prunnila, Mika ;
Ahopelto, Jouni ;
Sotomayor Torres, Clivia M. ;
Chen, Gang ;
Nelson, Keith A. .
PHYSICAL REVIEW B, 2015, 91 (24)
[9]   Nanophononic Metamaterial: Thermal Conductivity Reduction by Local Resonance [J].
Davis, Bruce L. ;
Hussein, Mahmoud I. .
PHYSICAL REVIEW LETTERS, 2014, 112 (05)
[10]   Thermal characterization of nanoscale phononic crystals using supercell lattice dynamics [J].
Davis, Bruce L. ;
Hussein, Mahmoud I. .
AIP ADVANCES, 2011, 1 (04)