An approximation scheme for the two-stage, two-dimensional knapsack problem

被引:3
作者
Caprara, Alberto [1 ]
Lodi, Andrea [1 ]
Monaci, Michele [2 ]
机构
[1] Univ Bologna, DEIS, I-40136 Bologna, Italy
[2] Univ Padua, DEIS, I-35131 Padua, Italy
关键词
Knapsack problem; Shelf packing; Polynomial time approximation schemes; BIN PACKING; SUM;
D O I
10.1016/j.disopt.2010.03.003
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present an approximation scheme for the two-dimensional version of the knapsack problem which requires packing a maximum-area set of rectangles in a unit square bin, with the further restrictions that packing must be orthogonal without rotations and done in two stages. Achieving a solution which is close to the optimum modulo a small additive constant can be done by taking wide inspiration from an existing asymptotic approximation scheme for two-stage two-dimensional bin packing. On the other hand, getting rid of the additive constant to achieve a canonical approximation scheme appears to be widely nontrivial. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 124
页数:11
相关论文
共 12 条
[1]  
[Anonymous], 1999, COMPLEXITY APPROXIMA, DOI DOI 10.1007/978-3-642-58412-1
[2]  
BANSAL N, 2009, SPRINGER LECT NOTES, V5878
[3]   The multiple subset sum problem [J].
Caprara, A ;
Kellerer, H ;
Pferschy, U .
SIAM JOURNAL ON OPTIMIZATION, 2000, 11 (02) :308-319
[4]   Fast approximation schemes for two-stage, two-dimensional bin packing [J].
Caprara, A ;
Lodi, A ;
Monaci, M .
MATHEMATICS OF OPERATIONS RESEARCH, 2005, 30 (01) :150-172
[5]   On the two-dimensional knapsack problem [J].
Caprara, A ;
Monaci, M .
OPERATIONS RESEARCH LETTERS, 2004, 32 (01) :5-14
[6]  
Coffman EG, 1980, SIAM J COMPUT, V9, P801
[7]  
DELAVEGA WF, 1981, COMBINATORICA, V1, P349
[8]   FAST APPROXIMATION ALGORITHMS FOR KNAPSACK AND SUM OF SUBSET PROBLEMS [J].
IBARRA, OH ;
KIM, CE .
JOURNAL OF THE ACM, 1975, 22 (04) :463-468
[9]   Maximizing the total profit of rectangles packed into a rectangle [J].
Jansen, Klaus ;
Zhang, Guochuan .
ALGORITHMICA, 2007, 47 (03) :323-342
[10]  
Kellerer H., 2004, KNAPSACK PROBLEMS, DOI DOI 10.1007/978-3-540-24777-710