Deciphering the Complexity of Ligand-Protein Recognition Pathways Using Supervised Molecular Dynamics (SuMD) Simulations

被引:66
作者
Cuzzolin, Alberto [1 ]
Sturlese, Mattia [1 ]
Deganutti, Giuseppe [1 ]
Salmaso, Veronica [1 ]
Sabbadin, Davide [1 ]
Ciancetta, Antonella [1 ]
Moro, Stefano [1 ]
机构
[1] Univ Padua, Dept Pharmaceut & Pharmacol Sci, MMS, Via Marzolo 5, Padua, Italy
关键词
HUMAN-SERUM-ALBUMIN; COUPLED RECEPTORS; ADENOSINE RECEPTOR; BINDING; PEROXIREDOXIN; SPECIFICITY; AUTOMATION; ASSIGNMENT; PARAMETERS; REVEAL;
D O I
10.1021/acs.jcim.5b00702
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Molecular recognition is a crucial issue when aiming to interpret the mechanism of known active substances as well as to develop novel active candidates. Unfortunately, simulating the binding process is still a challenging task because it requires classical MD experiments in a long microsecond time scale that are affordable only with a high-level computational capacity. In order to overcome this limiting factor, we have recently implemented an alternative MD approach, named supervised molecular dynamics (SuMD), and successfully applied it to G protein-coupled receptors (GPCRs). SuMD enables the investigation of ligand receptor binding events independently from the starting position, chemical structure of the ligand, and also from its receptor binding affinity. In this article, we present an extension of the SuMD application domain including different types of proteins in comparison with GPCRs. In particular, we have deeply analyzed the ligand-protein recognition pathways of six different case studies that we grouped into two different classes: globular and membrane proteins. Moreover, we introduce the SuMD-Analyzer tool that we have specifically implemented to help the user in the analysis of the SuMD trajectories. Finally, we emphasize the limit of the SuMD applicability domain as well as its strengths in analyzing the complexity of ligand protein recognition pathways.
引用
收藏
页码:687 / 705
页数:19
相关论文
共 59 条
[1]   Comparing Binding Modes of Analogous Fragments Using NMR in Fragment-Based Drug Design: Application to PRDX5 [J].
Aguirre, Clementine ;
ten Brink, Tim ;
Guichou, Jean-Francois ;
Cala, Olivier ;
Krimm, Isabelle .
PLOS ONE, 2014, 9 (07)
[2]  
[Anonymous], Gnuplot 4.5: An interactive plotting program
[3]   Discovery of Fragment Molecules That Bind the Human Peroxiredoxin 5 Active Site [J].
Barelier, Sarah ;
Linard, Dominique ;
Pons, Julien ;
Clippe, Andre ;
Knoops, Bernard ;
Lancelin, Jean-Marc ;
Krimm, Isabelle .
PLOS ONE, 2010, 5 (03)
[4]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]  
Bohm H.-J., 2003, METHODS PRINCIPLES M
[7]   Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations [J].
Buch, Ignasi ;
Giorgino, Toni ;
De Fabritiis, Gianni .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (25) :10184-10189
[8]  
Case D., 2014, AMBER 14 VERSION AMB
[9]  
CCG Inc, 2014, MOL OP ENV MOE
[10]   Advances in Computational Techniques to Study GPCR-Ligand Recognition [J].
Ciancetta, Antonella ;
Sabbadin, Davide ;
Federico, Stephanie ;
Spalluto, Giampiero ;
Moro, Stefano .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2015, 36 (12) :878-890