Generic-case complexity, decision problems in group theory, and random walks

被引:148
作者
Kapovich, I
Myasnikov, A
Schupp, P
Shpilrain, V
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] CUNY City Coll, Dept Math, New York, NY 10031 USA
关键词
D O I
10.1016/S0021-8693(03)00167-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a precise definition of "generic-case complexity" and show that for a very large class of finitely generated groups the classical decision problems of group theory-the word, conjugacy, and membership problems-all have linear-time generic-case complexity. We prove such theorems by using the theory of random walks on regular graphs. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:665 / 694
页数:30
相关论文
共 65 条
[1]   Decision problems for groups and semigroups [J].
Adian, SI ;
Durnev, VG .
RUSSIAN MATHEMATICAL SURVEYS, 2000, 55 (02) :207-296
[2]  
[Anonymous], 1992, INT J ALGEBR COMPUT, DOI DOI 10.1142/S0218196792000025
[3]  
[Anonymous], P STEKLOV I MATH
[4]  
[Anonymous], 1994, Annales de la Faculte des Sciences de Toulouse
[5]  
[Anonymous], 1991, GROUP THEORY GEOMETR
[6]  
Anshel I, 1999, MATH RES LETT, V6, P287
[7]   ARTIN GROUPS AND INFINITE COXETER GROUPS [J].
APPEL, KI ;
SCHUPP, PE .
INVENTIONES MATHEMATICAE, 1983, 72 (02) :201-220
[8]  
Arzhantseva G. N., 1996, Mat. Zametki, V59, P489
[9]   A property of subgroups of infinite index in a free group [J].
Arzhantseva, GN .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (11) :3205-3210
[10]   Generic properties of finitely presented groups and Howson's theorem [J].
Arzhantseva, GN .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (11) :3783-3792