Understanding Lithium Inventory Loss and Sudden Performance Fade in Cylindrical Cells during Cycling with Deep-Discharge Steps

被引:145
作者
Sarasketa-Zabala, E. [1 ]
Aguesse, F. [2 ]
Villarreal, I. [1 ]
Rodriguez-Martinez, L. M. [1 ]
Lopez, C. M. [2 ]
Kubiak, P. [2 ]
机构
[1] IK4 Ikerlan, Energy Business Unit, E-01510 Minao, Spain
[2] CIC Energigune, E-01510 Minao, Spain
关键词
DIFFERENTIAL VOLTAGE ANALYSES; ION BATTERIES; HIGH-POWER; CAPACITY FADE; ACCELERATED CALENDAR; POSTMORTEM ANALYSIS; PHOSPHO-OLIVINES; AGING MECHANISMS; LIFE; DEGRADATION;
D O I
10.1021/jp510071d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The cycling performance fade of LFP-based Li-ion cylindrical batteries is evaluated under maximum cycling voltage amplitude. Diagnostic evaluation of the aging mechanisms included in situ electrochemical measurements and ex situ destructive physicochemical and electrochemical analyses of cell components. SEM, EDS, XRD, and electrochemical measurements of harvested electrodes confirmed that the primary cell performance degradation modes are loss of active lithium inventory (LLI) and loss of active material (LAM) related to graphite electrode. Aging phenomena were associated with the progressive decomposition of the electrolyte. Cell capacity loss was concluded to be dominated by SEI layer growth, which also led to a sharp power loss together with localized lithium plating on the negative electrode surface upon prolonged cycling. The graphite surface was polymerized and inactivated in localized central parts of the jelly-roll, leading to large cavities as a result of metallic lithium and electrolyte reactions. No degradation of the structure or performance of the LFP positive electrode was detected. In this paper, aging processes are examined in the overall context of cell performance fade during accelerated cycling operation.
引用
收藏
页码:896 / 906
页数:11
相关论文
共 68 条
[11]   Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells [J].
Aurbach, Doron ;
Markovsky, Boris ;
Talyossef, Yosef ;
Salitra, Gregory ;
Kim, Hyeong-Jin ;
Choi, Seungdon .
JOURNAL OF POWER SOURCES, 2006, 162 (02) :780-789
[12]   Differential voltage analyses of high-power lithium-ion cells 2. Applications [J].
Bloom, I ;
Christophersen, J ;
Gering, K .
JOURNAL OF POWER SOURCES, 2005, 139 (1-2) :304-313
[13]   An accelerated calendar and cycle life study of Li-ion cells [J].
Bloom, I ;
Cole, BW ;
Sohn, JJ ;
Jones, SA ;
Polzin, EG ;
Battaglia, VS ;
Henriksen, GL ;
Motloch, C ;
Richardson, R ;
Unkelhaeuser, T ;
Ingersoll, D ;
Case, HL .
JOURNAL OF POWER SOURCES, 2001, 101 (02) :238-247
[14]   Differential voltage analyses of high-power lithium-ion cells - 3. Another anode phenomenon [J].
Bloom, Ira ;
Christophersen, Jon P. ;
Abraham, Daniel P. ;
Gering, Kevin L. .
JOURNAL OF POWER SOURCES, 2006, 157 (01) :537-542
[15]   Investigation of aging mechanisms of high power Li-ion cells used for hybrid electric vehicles [J].
Bourlot, Sandrine ;
Blanchard, Philippe ;
Robert, Stephanie .
JOURNAL OF POWER SOURCES, 2011, 196 (16) :6841-6846
[16]   Stress evolution and capacity fade in constrained lithium-ion pouch cells [J].
Cannarella, John ;
Arnold, Craig B. .
JOURNAL OF POWER SOURCES, 2014, 245 :745-751
[17]   Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J].
Chen, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1184-A1189
[18]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[19]   Cell degradation in commercial LiFePO4 cells with high-power and high-energy designs [J].
Dubarry, Matthieu ;
Truchot, Cyril ;
Liaw, Bor Yann .
JOURNAL OF POWER SOURCES, 2014, 258 :408-419
[20]   Synthesize battery degradation modes via a diagnostic and prognostic model [J].
Dubarry, Matthieu ;
Truchot, Cyril ;
Liaw, Bor Yann .
JOURNAL OF POWER SOURCES, 2012, 219 :204-216