Finite-time and fixed-time stability analysis for time-varying systems: A dual approach

被引:4
作者
Michalak, Anna [1 ]
机构
[1] Univ Lodz, Fac Econ & Sociol, Dept Econometr, Rewolucji 1905 R 41, PL-90214 Lodz, Poland
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2022年 / 359卷 / 18期
关键词
STABILIZATION;
D O I
10.1016/j.jfranklin.2022.11.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present a new dual approach to investigating the stability of the system of two nonautonomous ODE with the right-hand side being only Lebesgue measurable with respect to time t. We define a new dual Lapunov function S which depends on three variables, and we give sufficient conditions for finite and fixed-time stability for the system using a dual Hamilton-Jacobi inequality and taking advantage of a class of functions M and MB. This method allows simultaneous investigation of the finite and fixed-time stability of the primary and the dual equation. We give some examples to illustrate the results obtained. As an application of this dual approach, we define the region of attraction and illustrate with an example. (c) 2022 Published by Elsevier Ltd on behalf of The Franklin Institute.
引用
收藏
页码:10676 / 10687
页数:12
相关论文
共 25 条
  • [1] Bacciotti A, 2005, Lyapunov functions and stability in control theory
  • [2] Finite-time stability of continuous autonomous systems
    Bhat, SP
    Bernstein, DS
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) : 751 - 766
  • [3] Sánchez-Tones JD, 2015, P AMER CONTR CONF, P5842, DOI 10.1109/ACC.2015.7172255
  • [4] A class of predefined-time stable dynamical systems
    Diego Sanchez-Torres, Juan
    Gomez-Gutierrez, David
    Lopez, Esteban
    Loukianov, Alexander G.
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2018, 35 : 1 - 29
  • [5] Finite-Time Stabilization and Optimal Feedback Control
    Haddad, Wassim M.
    L'Afflitto, Andrea
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (04) : 1069 - 1074
  • [6] FINITE-TIME CONTROLLERS
    HAIMO, VT
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (04) : 760 - 770
  • [7] Prescribed-Time Observers for Linear Systems in Observer Canonical Form
    Holloway, John
    Krstic, Miroslav
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (09) : 3905 - 3912
  • [8] On optimal predefined-time stabilization
    Jimenez-Rodriguez, E.
    Sanchez-Torres, J. D.
    Loukianov, A. G.
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2017, 27 (17) : 3620 - 3642
  • [9] Jimenez-Rodriguez E., PREPRINT
  • [10] A Note on Predefined-Time Stability
    Jimenez-Rodriguez, Esteban
    Jonathan Munoz-Vazquez, Aldo
    Diego Sanchez-Torres, Juan
    Loukianov, Alexander G.
    [J]. IFAC PAPERSONLINE, 2018, 51 (13): : 520 - 525