Deep learning with whole slide images can improve the prognostic risk stratification with stage III colorectal cancer

被引:21
作者
Sun, Caixia [1 ]
Li, Bingbing [3 ,4 ,5 ]
Wei, Genxia [2 ,3 ,4 ,5 ]
Qiu, Weihao [3 ,4 ,5 ]
Li, Danyi [3 ,4 ,5 ]
Li, Xiangzhao [3 ,4 ,5 ]
Liu, Xiangyu [2 ]
Wei, Wei [2 ]
Wang, Shuo [1 ,2 ]
Liu, Zhenyu [2 ,6 ,7 ]
Tian, Jie [1 ,2 ]
Liang, Li [3 ,4 ,5 ]
机构
[1] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch & Engn Med, Beijing 100191, Peoples R China
[2] Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing Key Lab Mol Imaging,State Key Lab Manageme, Beijing 100190, Peoples R China
[3] Southern Med Univ, Nanfang Hosp, Dept Pathol, Guangzhou 510515, Guangdong, Peoples R China
[4] Southern Med Univ, Basic Med Coll, Guangzhou 510515, Guangdong, Peoples R China
[5] Guangdong Prov Key Lab Mol Tumor Pathol, Guangzhou 510515, Guangdong, Peoples R China
[6] Chinese Acad Sci, Inst Automat, CAS Ctr Excellence Brain Sci & Intelligence Techno, Beijing 100190, Peoples R China
[7] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
Chemotherapy duration; Whole slide images; Deep learning; Colorectal cancer; Prognosis; COLON-CANCER; ADJUVANT CHEMOTHERAPY; MICROSATELLITE INSTABILITY; SURVIVAL; RECURRENCE; PREDICTION; DURATION; DISEASES;
D O I
10.1016/j.cmpb.2022.106914
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and Objective: Adjuvant chemotherapy is recommended as standard treatment for colorectal cancer (CRC) with stage III according to TNM stage. However, outcomes are varied even among patients receiving similar treatments. We aimed to develop a prognostic signature to stratify outcomes and benefit from different chemotherapy regimens by analyzing whole slide images (WSI) using deep learning.Methods: We proposed an unsupervised deep learning network (variational autoencoder and generative adversarial network) in 180,819 image tiles from the training set (147 patients) to develop a WSI signature for predicting the disease-free survival (DFS) and overall survival (OS) of patients, and tested in validation set of 63 patients. An integrated nomogram was constructed to investigate the incremental value of deep learning signature (DLS) to TNM stage for individualized outcomes prediction.Results: The DLS was associated with DFS and OS in both training and validation sets and proved to be an independent prognostic factor. Integrating the DLS and clinicopathologic factors showed better perfor-mance (C-index: DFS, 0.748; OS, 0.794; in the validation set) than TNM stage. In patients whose DLS and clinical risk levels were inconsistent, their risk of relapse was reclassified. In the subgroup of patients treated with 3 months, high-DL S was associated with worse DFS (hazard ratio: 3.622-7.728).Conclusions: The proposed based-WSI DLS improved risk stratification and could help identify patients with stage III CRC who may benefit from the prolonged duration of chemotherapy.(c) 2022 Published by Elsevier B.V.
引用
收藏
页数:11
相关论文
共 44 条
  • [1] Abbet Christian, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12265), P480, DOI 10.1007/978-3-030-59722-1_46
  • [2] The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging
    Amin, Mahul B.
    Greene, Frederick L.
    Edge, Stephen B.
    Compton, Carolyn C.
    Gershenwald, Jeffrey E.
    Brookland, Robert K.
    Meyer, Laura
    Gress, Donna M.
    Byrd, David R.
    Winchester, David P.
    [J]. CA-A CANCER JOURNAL FOR CLINICIANS, 2017, 67 (02) : 93 - 99
  • [3] André T, 2020, LANCET ONCOL, V21, P1620, DOI 10.1016/S1470-2045(20)30527-1
  • [4] Improved Overall Survival With Oxaliplatin, Fluorouracil, and Leucovorin As Adjuvant Treatment in Stage II or III Colon Cancer in the MOSAIC Trial
    Andre, Thierry
    Boni, Corrado
    Navarro, Matilde
    Tabernero, Josep
    Hickish, Tamas
    Topham, Clare
    Bonetti, Andrea
    Clingan, Philip
    Bridgewater, John
    Rivera, Fernando
    de Gramont, Aimery
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2009, 27 (19) : 3109 - 3116
  • [5] Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network
    Anthimopoulos, Marios
    Christodoulidis, Stergios
    Ebner, Lukas
    Christe, Andreas
    Mougiakakou, Stavroula
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1207 - 1216
  • [6] Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up
    Argiles, G.
    Tabernero, J.
    Labianca, R.
    Hochhauser, D.
    Salazar, R.
    Iveson, T.
    Laurent-Puig, P.
    Quirke, P.
    Yoshino, T.
    Taieb, J.
    Martinelli, E.
    Arnold, D.
    [J]. ANNALS OF ONCOLOGY, 2020, 31 (10) : 1291 - 1305
  • [7] Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer
    Bejnordi, Babak Ehteshami
    Veta, Mitko
    van Diest, Paul Johannes
    van Ginneken, Bram
    Karssemeijer, Nico
    Litjens, Geert
    van der Laak, Jeroen A. W. M.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22): : 2199 - 2210
  • [8] NCCN Guidelines® Insights Colon Cancer, Version 2.2018 Featured Updates to the NCCN Guidelines
    Benson, Al B., III
    Venook, Alan P.
    Al-Hawary, Mahmoud M.
    Cederquist, Lynette
    Chen, Yi-Jen
    Ciombor, Kristen K.
    Cohen, Stacey
    Cooper, Harry S.
    Deming, Dustin
    Engstrom, Paul F.
    Garrido-Laguna, Ignacio
    Grem, Jean L.
    Grothey, Axel
    Hochster, Howard S.
    Hoffe, Sarah
    Hunt, Steven
    Kamel, Ahmed
    Kirilcuk, Natalie
    Krishnamurthi, Smitha
    Messersmith, Wells A.
    Meyerhardt, Jeffrey
    Miller, Eric D.
    Mulcahy, Mary F.
    Murphy, James D.
    Nurkin, Steven
    Saltz, Leonard
    Sharma, Sunil
    Shibata, David
    Skibber, John M.
    Sofocleous, Constantinos T.
    Stoffel, Elena M.
    Stotsky-Himelfarb, Eden
    Willett, Christopher G.
    Wuthrick, Evan
    Gregory, Kristina M.
    Freedman-Cass, Deborah A.
    [J]. JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2018, 16 (04): : 359 - 369
  • [9] Risk of recurrence in patients with colon cancer stage II and III: A systematic review and meta-analysis of recent literature
    Bockelman, Camilla
    Engelmann, Bodil E.
    Kaprio, Tuomas
    Hansen, Torben F.
    Glimelius, Bengt
    [J]. ACTA ONCOLOGICA, 2015, 54 (01) : 5 - 16
  • [10] Deep learning based tissue analysis predicts outcome in colorectal cancer
    Bychkov, Dmitrii
    Linder, Nina
    Turkki, Riku
    Nordling, Stig
    Kovanen, Panu E.
    Verrill, Clare
    Walliander, Margarita
    Lundin, Mikael
    Haglund, Caj
    Lundin, Johan
    [J]. SCIENTIFIC REPORTS, 2018, 8