Hippocampal Subfield Atrophies in Converted and Not-Converted Mild Cognitive Impairments Patients by a Markov Random Fields Algorithm

被引:31
作者
Vasta, Roberta [1 ]
Augimeri, Antonio [1 ]
Cerasa, Antonio [1 ]
Nigro, Salvatore [1 ]
Gramigna, Vera [3 ]
Nonnis, Matteo [1 ]
Rocca, Federico [1 ]
Zito, Giancarlo [4 ]
Quattrone, Aldo [1 ,2 ]
机构
[1] Inst Bioimaging & Mol Physiol CNR, Neuroimaging Unit, Germaneto, CZ, Italy
[2] Magna Graecia Univ Catanzaro, Inst Neurol, Germaneto, CZ, Italy
[3] Magna Graecia Univ Catanzaro, Dipartimento Sci Med & Chirurg, Germaneto, CZ, Italy
[4] S Giovanni Calibita Fatebenefratelli Hosp, Natl Res Council, LETS, ISTC, Rome, Italy
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
Atrophy; automated segmentation; classification models; freesurfer; hippocampal subfields; mild cognitive impairment; volumetry; ALZHEIMERS-DISEASE; NEURONAL LOSS; SEGMENTATION; MRI; DEMENTIA; CONVERSION; ABNORMALITIES; VOLUMETRY; PATHOLOGY; MEMORY;
D O I
10.2174/1567205013666160120151457
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Although measurement of total hippocampal volume is considered as an important hallmark of Alzheimer's disease (AD), recent evidence demonstrated that atrophies of hippocampal subregions might be more sensitive in predicting this neurodegenerative disease. The vast majority of neuroimaging papers investigating this topic are focused on the difference between AD and patients with mild cognitive impairment (MCI), not considering the impact of MCI patients who will or not convert in AD. For this reason, the aim of this study was to determine if measurements of hippocampal subfields provide advantages over total hippocampal volume for discriminating these groups. Hippocampal subfields volumetry was extracted in 55 AD, 32 converted and 89 not-converted MCI (c/nc-MCI) and 47 healthy controls, using an atlas-based automatic algorithm based on Markov random fields embedded in the Freesurfer framework. To evaluate the impact of hippocampal atrophy in discriminating the insurgence of AD-like phenotypes we used three classification methods: Support Vector Machine, Naive Bayesian Classifier and Neural Networks Classifier. Taking into account only the total hippocampal volume, all classification models, reached a sensitivity of about 66% in discriminating between c-MCI and nc-MCI. Otherwise, classification analysis considering all segmenting subfields increased accuracy to diagnose c-MCI from 68% to 72%. This effect resulted to be strongly dependent upon atrophies of the subiculum and presubiculum. Our multivariate analysis revealed that the magnitude of the difference considering hippocampal subfield volumetry, as segmented by the considered atlas-based automatic algorithm, offers an advantage over hippocampal volume in distinguishing early AD from nc-MCI.
引用
收藏
页码:566 / 574
页数:9
相关论文
共 42 条
  • [1] Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps
    Apostolova, Liana G.
    Dutton, Rebecca A.
    Dinov, Ivo D.
    Hayashi, Kiralee M.
    Toga, Arthur W.
    Cummings, Jeffrey L.
    Thompson, Paul M.
    [J]. ARCHIVES OF NEUROLOGY, 2006, 63 (05) : 693 - 699
  • [2] 3D Comparison of Low, Intermediate, and Advanced Hippocampal Atrophy in MCI
    Apostolova, Liana G.
    Thompson, Paul M.
    Green, Amity E.
    Hwang, Kristy S.
    Zoumalan, Charleen
    Jack, Clifford R., Jr.
    Harvey, Danielle J.
    Petersen, Ronald C.
    Thal, Leon J.
    Aisen, Paul S.
    Toga, Arthur W.
    Cummings, Jeffrey L.
    DeCarli, Charles S.
    [J]. HUMAN BRAIN MAPPING, 2010, 31 (05) : 786 - 797
  • [3] NEUROPATHOLOGICAL STAGING OF ALZHEIMER-RELATED CHANGES
    BRAAK, H
    BRAAK, E
    [J]. ACTA NEUROPATHOLOGICA, 1991, 82 (04) : 239 - 259
  • [4] Hippocampal mean diffusivity and memory in healthy elderly individuals A cross-sectional study
    Carlesimo, Giovanni A.
    Cherubini, Andrea
    Caltagirone, Carlo
    Spalletta, Gianfranco
    [J]. NEUROLOGY, 2010, 74 (03) : 194 - 200
  • [5] MRI predictors of cognitive change in a diverse and carefully characterized elderly population
    Carmichael, Owen
    Mungas, Dan
    Beckett, Laurel
    Harvey, Danielle
    Farias, Sarah Tomaszewski
    Reed, Bruce
    Olichney, John
    Miller, Joshua
    DeCarli, Charles
    [J]. NEUROBIOLOGY OF AGING, 2012, 33 (01) : 83 - U611
  • [6] Three-dimensional surface mapping of hippocampal atrophy progression from MCI to AD and over normal aging as assessed using voxel-based morphometry
    Chetelat, G.
    Fouquet, M.
    Kalpouzos, G.
    Denghien, I.
    De la Sayette, V.
    Viader, F.
    Mezenge, F.
    Landeau, B.
    Baron, J. C.
    Eustache, F.
    Desgranges, B.
    [J]. NEUROPSYCHOLOGIA, 2008, 46 (06) : 1721 - 1731
  • [7] Fully Automatic Hippocampus Segmentation and Classification in Alzheimer's Disease and Mild Cognitive Impairment Applied on Data From ADNI
    Chupin, Marie
    Gerardin, Emilie
    Cuingnet, Remi
    Boutet, Claire
    Lemieux, Louis
    Lehericy, Stephane
    Benali, Habib
    Garnero, Line
    Colliot, Olivier
    [J]. HIPPOCAMPUS, 2009, 19 (06) : 579 - 587
  • [8] Preclinical detection of Alzheimer's disease: hippocampal shape and volume predict dementia onset in the elderly
    Csernansky, JG
    Wang, L
    Swank, J
    Miller, JP
    Gado, M
    McKeel, D
    Miller, M
    Morriss, JC
    [J]. NEUROIMAGE, 2005, 25 (03) : 783 - 792
  • [9] Cortical surface-based analysis - I. Segmentation and surface reconstruction
    Dale, AM
    Fischl, B
    Sereno, MI
    [J]. NEUROIMAGE, 1999, 9 (02) : 179 - 194
  • [10] Effects of Age and Alzheimer's Disease on Hippocampal Subfields: Comparison Between Manual and FreeSurfer Volumetry
    de Flores, Robin
    La Joie, Renaud
    Landeau, Brigitte
    Perrotin, Audrey
    Mezenge, Florence
    de La Sayette, Vincent
    Eustache, Francis
    Desgranges, Beatrice
    Chetelat, Gael
    [J]. HUMAN BRAIN MAPPING, 2015, 36 (02) : 463 - 474