On the Frequency Resolution of Improved Empirical Mode Decomposition Method

被引:0
作者
Ozturk, A.
Seker, S.
机构
来源
INTERNATIONAL REVIEW OF ELECTRICAL ENGINEERING-IREE | 2010年 / 5卷 / 04期
关键词
Empirical Mode Decomposition; End Effects; Frequency Resolution; Local Mean Approximation; Vibration Data; HILBERT-HUANG TRANSFORM; TIME-SERIES ANALYSIS; FAULT-DIAGNOSIS; BEARING;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Empirical Mode Decomposition, which constitutes the core of Hilbert Huang Transform, is an efficient method in analysis of non-stationary and non-linear signals due to its data-driven nature. Nevertheless, the original method imposes a limitation on the frequency resolution and also suffers due to end effects. In this paper, through analyses of synthetic and actual vibration data, it is shown that better frequency resolution beyond the limitation imposed by the original method can be achieved by modifying the local mean approximation and boundary values of the original algorithm. Copyright (C) 2010 Praise Worthy Prize S.r.l - All rights reserved
引用
收藏
页码:1798 / 1805
页数:8
相关论文
共 10 条
[1]  
CORREA TK, 2007, J ENG MECH, V133, P849
[2]  
ERBAY AS, 1999, THESIS U TENNESSEE K
[3]  
Eren L, 2009, INT REV ELECTR ENG-I, V4, P260
[4]   Applications of Hilbert-Huang transform to non-stationary financial time series analysis [J].
Huang, NE ;
Wu, ML ;
Qu, WD ;
Long, SR ;
Shen, SSP .
APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2003, 19 (03) :245-268
[5]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995
[6]   A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing [J].
Peng, ZK ;
Tse, PW ;
Chu, FL .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2005, 19 (05) :974-988
[7]   Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform [J].
Rai, V. K. ;
Mohanty, A. R. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2007, 21 (06) :2607-2615
[8]   One or two frequencies? The empirical mode decomposition answers [J].
Rilling, Gabriel ;
Flandrin, Patrick .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (01) :85-95
[9]  
Sadoughi A, 2010, INT REV ELECTR ENG-I, V5, P148
[10]  
SEKER S, 2000, MAINT REL C P KNOXV