Multi-classes Semi-supervised Learning on Riemannian Manifolds

被引:0
作者
Zhao, Zhong-Qiu [1 ,2 ]
Glotin, Herve [2 ]
Gao, Jun [1 ]
Wu, Xin-Dong [1 ]
机构
[1] Hefei Univ Technol, Comp & Informat Sch, Hefei 230009, Anhui, Peoples R China
[2] Univ Sud Toulon Var, CNRS, LSIS, UMR, Toulon, France
来源
PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND NATURAL COMPUTING, VOL I | 2009年
基金
中国国家自然科学基金;
关键词
semi-supervised learning; Riemannian manifolds; learning speed; multi-classes problem; DIMENSIONALITY REDUCTION;
D O I
10.1109/CINC.2009.105
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A modified semi-supervised learning algorithm based on Riemannian manifolds is proposed, which extends the applicable field to the case of multi-classes problem. Furthermore, the modified version largely increases the learning speed, while attains the classification performance as satisfying as the original algorithm.
引用
收藏
页码:527 / +
页数:3
相关论文
共 6 条
  • [1] [Anonymous], 2003, INT C MACH LEARN
  • [2] Semi-supervised learning on Riemannian manifolds
    Belkin, M
    Niyogi, P
    [J]. MACHINE LEARNING, 2004, 56 (1-3) : 209 - 239
  • [3] Laplacian eigenmaps for dimensionality reduction and data representation
    Belkin, M
    Niyogi, P
    [J]. NEURAL COMPUTATION, 2003, 15 (06) : 1373 - 1396
  • [4] Du WW, 2005, LECT NOTES ARTIF INT, V3614, P1
  • [5] Seeger Matthias, 2000, Technical Report
  • [6] ZHOU DY, 2003, LEARNING LOCAL GLOBA