Automatic segmentation of inner ear on CT-scan using auto-context convolutional neural network

被引:23
作者
Hussain, Raabid [1 ]
Lalande, Alain [1 ,2 ]
Girum, Kibrom Berihu [1 ]
Guigou, Caroline [1 ,3 ]
Grayeli, Alexis Bozorg [1 ,3 ]
机构
[1] Univ Burgundy Franche Comte, ImViA Lab, Dijon, France
[2] Univ Hosp Dijon, Dept Med Imaging, Dijon, France
[3] Univ Hosp Dijon, Dept Otolaryngol, Dijon, France
关键词
COCHLEAR IMPLANTATION; MICRO-CT; IMAGES; MIDDLE; SIZE; TOOL;
D O I
10.1038/s41598-021-83955-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Temporal bone CT-scan is a prerequisite in most surgical procedures concerning the ear such as cochlear implants. The 3D vision of inner ear structures is crucial for diagnostic and surgical preplanning purposes. Since clinical CT-scans are acquired at relatively low resolutions, improved performance can be achieved by registering patient-specific CT images to a high-resolution inner ear model built from accurate 3D segmentations based on micro-CT of human temporal bone specimens. This paper presents a framework based on convolutional neural network for human inner ear segmentation from micro-CT images which can be used to build such a model from an extensive database. The proposed approach employs an auto-context based cascaded 2D U-net architecture with 3D connected component refinement to segment the cochlear scalae, semicircular canals, and the vestibule. The system was formulated on a data set composed of 17 micro-CT from public Hear-EU dataset. A Dice coefficient of 0.90 and Hausdorff distance of 0.74 mm were obtained. The system yielded precise and fast automatic inner-ear segmentations.
引用
收藏
页数:10
相关论文
共 65 条
[1]   Automatic Cochlear Length and Volume Size Estimation [J].
Al-Dhamari, Ibraheem ;
Bauer, Sabine ;
Paulus, Dietrich ;
Helal, Rania ;
Lisseck, Friedrich ;
Jacob, Roland .
OR 2.0 CONTEXT-AWARE OPERATING THEATERS, COMPUTER ASSISTED ROBOTIC ENDOSCOPY, CLINICAL IMAGE-BASED PROCEDURES, AND SKIN IMAGE ANALYSIS, OR 2.0 2018, 2018, 11041 :54-61
[2]   Diagnostic Value of 3D Segmentation in Understanding the Anatomy of Human Inner Ear Including Malformation Types [J].
Alenzi, Saad ;
Dhanasingh, Anandhan ;
Alanazi, Hani ;
Alsanosi, Abdulrahman ;
Hagr, Abdulrahman .
ENT-EAR NOSE & THROAT JOURNAL, 2021, 100 (5_SUPPL) :675S-683S
[3]   Recurrent residual U-Net for medical image segmentation [J].
Alom, Md Zahangir ;
Yakopcic, Chris ;
Hasan, Mahmudul ;
Taha, Tarek M. ;
Asari, Vijayan K. .
JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)
[4]  
Anders C.J., LECT NOTES COMPUTER, V11700, P297, DOI [10.1007/978-3-030-28954-6_16, DOI 10.1007/978-3-030-28954-6_16]
[5]  
[Anonymous], 2005, proc. of Graphicon, DOI DOI 10.1016/J.AJ0D0.2004.07.036
[6]   Variations in Microanatomy of the Human Cochlea [J].
Avci, Ersin ;
Nauwelaers, Tim ;
Lenarz, Thomas ;
Hamacher, Volkmar ;
Kral, Andrej .
JOURNAL OF COMPARATIVE NEUROLOGY, 2014, 522 (14) :3245-3261
[7]   A Perlin Noise-Based Augmentation Strategy for Deep Learning with Small Data Samples of HRCT Images [J].
Bae, Hyun-Jin ;
Kim, Chang-Wook ;
Kim, Namju ;
Park, BeomHee ;
Kim, Namkug ;
Seo, Joon Beom ;
Lee, Sang Min .
SCIENTIFIC REPORTS, 2018, 8
[8]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[9]   How to perform 3D reconstruction of skull base tumours [J].
Bonne, N. -X. ;
Dubrulle, F. ;
Risoud, M. ;
Vincent, C. .
EUROPEAN ANNALS OF OTORHINOLARYNGOLOGY-HEAD AND NECK DISEASES, 2017, 134 (02) :117-120
[10]   Deep Learning for Cardiac Image Segmentation: A Review [J].
Chen, Chen ;
Qin, Chen ;
Qiu, Huaqi ;
Tarroni, Giacomo ;
Duan, Jinming ;
Bai, Wenjia ;
Rueckert, Daniel .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7