Adsorption characteristics of graphene oxide in the removal of Cu(II) from aqueous solutions

被引:5
|
作者
Yi, In-Geol [1 ]
Kang, Jin-Kyu [1 ]
Kim, Jae-Hyun [2 ]
Lee, Seung-Chan [1 ]
Sim, Eun-Hye [1 ]
Park, Jeong-Ann [2 ]
Kim, Song-Bae [1 ,3 ,4 ]
机构
[1] Seoul Natl Univ, Environm Funct Mat & Water Treatment Lab, Seoul, South Korea
[2] Korea Inst Sci & Technol, Ctr Water Resource Cycle Res, Seoul 02792, South Korea
[3] Seoul Natl Univ, Dept Rural Syst Engn, Seoul, South Korea
[4] Seoul Natl Univ, Res Inst Agr & Life Sci, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Adsorption; Copper ions; FTIR; Graphene oxide; XPS; HEAVY-METAL IONS; CARBON NANOTUBES; CONTAMINATED WATER; WASTE-WATER; COPPER IONS; CU2+ IONS; COMPOSITE; NANOPARTICLES; PB(II); CD(II);
D O I
10.5004/dwt.2017.20651
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The aim of this study was to investigate the adsorption characteristics of graphene oxide (GO) to remove Cu(II) from aqueous solutions. Batch experiments were performed to examine the effects of adsorbent dose, solution pH, competing Ni(II) ions, reaction time, initial Cu(II) concentration, and temperature on the adsorption of Cu(II) onto GO. Equilibrium, kinetic, and thermodynamic models were used to analyze the sorption data. Fourier-transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses were also performed to characterize the adsorption of Cu(II) onto GO. Results showed that the Cu(II) sorption capacity remained relatively constant between pH 3 and 5 (12.26-12.88 mg/g), which was higher than that at pH 2 (5.43 mg/g). In a binary solution of Cu(II) and Ni(II), the Cu(II) sorption capacities (6.61-9.79 mg/g) were higher than those (5.17-7.88 mg/g) of Ni(II). The maximum Cu(II) sorption capacity of GO was determined from the Langmuir isotherm model to be 39.58 mg/g. Sorption model analyses demonstrated that the Langmuir isotherm was best fit to the equilibrium data, whereas the pseudo-first order model was most suitable at describing the kinetic data. Thermodynamic analysis showed that the adsorption of Cu(II) onto GO was endothermic and spontaneous (Delta H degrees = 0.627 kJ/mol, Delta S degrees = 2.717 J/K/mol, Delta G degrees = -0.142 similar to -0.251 kJ/mol). FTIR spectra demonstrated that after the adsorption of Cu(II), the broad band (O=C-OH, carboxyl group) weakened and shifted to 3181 cm(-1), whereas the peak at 1164 cm(-1) (C-OH, hydroxyl group) disappeared. XPS spectra showed that the Cu2p peak appeared in a wide scan of GO after the adsorption of Cu(II). Within a high-resolution scan of the Cu2p region, Cu2p(3/2) and Cu2p(1/2) peaks appeared at 932.8 and 953.1 eV, respectively.
引用
收藏
页码:308 / 317
页数:10
相关论文
共 50 条
  • [31] Removal of Cd (II), Pb (II) and Cu (II) ions from aqueous solution by polyamidoamine dendrimer grafted magnetic graphene oxide nanosheets
    Peer, Fatemeh Einollahi
    Bahramifar, Nader
    Younesi, Habibollah
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2018, 87 : 225 - 240
  • [32] Highly effective removal of basic fuchsin from aqueous solutions by anionic polyacrylamide/graphene oxide aerogels
    Yang, Xiaoxia
    Li, Yanhui
    Du, Qiuju
    Sun, Jiankun
    Chen, Long
    Hu, Song
    Wang, Zonghua
    Xia, Yanzhi
    Xia, Linhua
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 453 : 107 - 114
  • [33] One-step fabrication of β-cyclodextrin modified magnetic graphene oxide nanohybrids for adsorption of Pb(II), Cu(II) and methylene blue in aqueous solutions
    Ma, Ying-Xia
    Shao, Wen-Jie
    Sun, Wen
    Kou, Ya-Lan
    Li, Xin
    Yang, Hai-Peng
    APPLIED SURFACE SCIENCE, 2018, 459 : 544 - 553
  • [34] A novel reusable nanocomposite adsorbent, xanthated Fe3O4-chitosan grafted onto graphene oxide, for removing Cu(II) from aqueous solutions
    Liu, Jinshui
    Liu, Wenxiu
    Wang, Yiru
    Xu, Meijiao
    Wang, Bin
    APPLIED SURFACE SCIENCE, 2016, 367 : 327 - 334
  • [35] STUDY OF THE Cu(II) REMOVAL FROM AQUEOUS SOLUTIONS BY ADSORPTION ON TITANIA
    Georgaka, A.
    Spanos, N.
    GLOBAL NEST JOURNAL, 2010, 12 (03): : 239 - 247
  • [36] Removal of radioselenium oxyanions from aqueous solutions by adsorption onto hydrous zirconium oxide
    Rashad, Ghada M.
    Soliman, Mohamed A.
    Mahmoud, Mamdoh R.
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2018, 317 (01) : 593 - 603
  • [37] Comparison of the efficiency of graphene oxide, activated graphene oxide, dendrimer-graphene oxide and activated dendrimer-graphene oxide for nitrate removal from aqueous solutions
    Alighardashi, Abolghasem
    Esfahani, Zahra Kashitarash
    Afkhami, Abbas
    Najafi, Farhood
    Hassani, Nemat
    DESALINATION AND WATER TREATMENT, 2017, 100 : 100 - 115
  • [38] Graphene Oxide Adsorption Enhanced by Attapulgite to Remove Pb (II) from Aqueous Solution
    Wei, Bigui
    Cheng, Xiabing
    Wang, Gang
    Li, Hua
    Song, Xiaosan
    Dai, Liang
    APPLIED SCIENCES-BASEL, 2019, 9 (07):
  • [39] Magnetic dithiocarbamate functionalized reduced graphene oxide for the removal of Cu(II), Cd(II), Pb(II), and Hg(II) ions from aqueous solution: Synthesis, adsorption, and regeneration
    Fu, Weng
    Huang, Zhiqiang
    CHEMOSPHERE, 2018, 209 : 449 - 456
  • [40] Porous cellulosic adsorbent for the removal of Cd (II), Pb(II) and Cu(II) ions from aqueous media
    Barsbay, Murat
    Kavakh, Pinar Akkas
    Tilki, Serhad
    Kavakh, Cengiz
    Guven, Olgun
    RADIATION PHYSICS AND CHEMISTRY, 2018, 142 : 70 - 76