2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC)
|
2022年
关键词:
nonlinear system identification;
state-space models;
model reduction;
deep learning;
auto-encoding;
STABILITY;
D O I:
10.1109/CDC51059.2022.9993232
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
The identification of a nonlinear dynamic model is an open topic in control theory, especially from sparse input-output measurements. A fundamental challenge of this problem is that very few to zero prior knowledge is available on both the state and the nonlinear system model. To cope with this challenge, we investigate the effectiveness of deep learning in the modeling of dynamic systems with nonlinear behavior by advocating an approach which relies on three main ingredients: (i) we show that under some structural conditions on the to-be-identified model, the state can be expressed in function of a sequence of the past inputs and outputs; (ii) this relation which we call the state map can be modelled by resorting to the well-documented approximation power of deep neural networks; (iii) taking then advantage of existing learning schemes, a state-space model can be finally identified. After the formulation and analysis of the approach, we show its ability to identify three different nonlinear systems. The performances are evaluated in terms of open-loop prediction on test data generated in simulation as well as a real world data-set of unmanned aerial vehicle flight measurements.
机构:
Univ Santiago Cali, Fac Ciencias Basicas, Calle 5 62-00, Santiago De Cali, ColombiaUniv Santiago Cali, Fac Ciencias Basicas, Calle 5 62-00, Santiago De Cali, Colombia
Hernandez-Velasco, Lina L.
Abanto-Valle, Carlos A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Dept Stat, Rio De Janeiro, BrazilUniv Santiago Cali, Fac Ciencias Basicas, Calle 5 62-00, Santiago De Cali, Colombia
Abanto-Valle, Carlos A.
Dey, Dipak K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Connecticut, Dept Stat, Storrs, CT USAUniv Santiago Cali, Fac Ciencias Basicas, Calle 5 62-00, Santiago De Cali, Colombia
Dey, Dipak K.
Castro, Luis M.
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Chile, Dept Stat, Casilla 306,Correo 22, Santiago, Chile
Ctr Discovery Struct Complex Data, Casilla 306,Correo 22, Santiago, ChileUniv Santiago Cali, Fac Ciencias Basicas, Calle 5 62-00, Santiago De Cali, Colombia
机构:
Novo Nordisk AS, Beijing, Peoples R ChinaNovo Nordisk AS, Beijing, Peoples R China
Wang, Fan
Wang, Keli
论文数: 0引用数: 0
h-index: 0
机构:
China Acad Railway Sci, Postgrad Dept, Beijing, Peoples R China
China Railway Test & Certificat Ctr Ltd, Beijing, Peoples R ChinaNovo Nordisk AS, Beijing, Peoples R China
Wang, Keli
Yao, Boyu
论文数: 0引用数: 0
h-index: 0
机构:
Novo Nordisk AS, Beijing, Peoples R ChinaNovo Nordisk AS, Beijing, Peoples R China
Yao, Boyu
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT III,
2023,
14256
: 74
-
86
机构:
MIT, Mech Engn Dept, Cambridge, MA 02139 USAMIT, Mech Engn Dept, Cambridge, MA 02139 USA
Naghnaeian, Mohammad
Voulgaris, Petros G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Aerosp Engn Dept, Urbana, IL 61801 USA
Univ Illinois, Coordinated Sci Lab, 1101 W Springfield Ave, Urbana, IL 61801 USAMIT, Mech Engn Dept, Cambridge, MA 02139 USA
Voulgaris, Petros G.
Dullerud, Geir E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Coordinated Sci Lab, 1101 W Springfield Ave, Urbana, IL 61801 USA
Univ Illinois, Mech Sci & Engn Dept, Urbana, IL 61801 USAMIT, Mech Engn Dept, Cambridge, MA 02139 USA
机构:
Cent South Univ, Sch Automat, Changsha 410083, Peoples R ChinaCent South Univ, Sch Automat, Changsha 410083, Peoples R China
Wang, Kai
Chen, Junghui
论文数: 0引用数: 0
h-index: 0
机构:
Chung Yuan Christian Univ, Dept Chem Engn, Taoyuan 32023, TaiwanCent South Univ, Sch Automat, Changsha 410083, Peoples R China
Chen, Junghui
Song, Zhihuan
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R ChinaCent South Univ, Sch Automat, Changsha 410083, Peoples R China