Effects of interface layer on the thermophysical properties of solar salt-SiO2 nanofluids: A molecular dynamics simulation

被引:19
作者
Rao, Zhenghua [1 ]
Ye, Kai [1 ]
Wang, Huan [1 ]
Liao, Shengming [1 ]
机构
[1] Cent South Univ, Sch Energy Sci & Engn, Changsha 410083, Peoples R China
关键词
interface layer; molecular dynamics; molten salt based nanofluids; specific heat capacity; thermal conductivity; THERMAL-ENERGY STORAGE; MOLTEN-SALT NANOFLUIDS; HEAT-CAPACITY; NANOPARTICLE DISPERSION; CONDUCTIVITY; SIO2; STABILITY; FIELD;
D O I
10.1002/er.6659
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The microstructure and behaviors of the interface layer around the nanoparticle are strongly related to the overall thermophysical properties of molten salt-based nanofluids (MSBNFs). Understanding this link may enable the advanced heat transfer fluid (HTF) for concentrated solar power and other applications. In this study, a molecular dynamics (MD) model for solar salt (60 wt% NaNO3/40 wt% KNO3)-SiO2 nanofluid system is developed to estimate the characteristics of the interface layer and their effects on the overall specific heat capacity (SHC) and effective thermal conductivity (ETC) of MSBNFs. The results show that the SHC and thermal conductivity (TC) of the interface layer in MSBNFs are, respectively, 1.44-1.85 and 1.05-1.97 times higher than those of pure solar salt. The SHC of the interface layer has a significant effect on the overall SHC of the MSBNFs, but the interface layer is not the dominant influencing factor for the ETC enhancement of MSBNFs and thus has less effect on the overall ETC.
引用
收藏
页码:13323 / 13337
页数:15
相关论文
共 47 条
  • [1] Molecular dynamics simulation of solar salt (NaNO3-KNO3) mixtures
    Anagnostopoulos, A.
    Alexiadis, A.
    Ding, Y.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 200
  • [2] Simplified force field for molecular dynamics simulations of amorphous SiO2 for solar applications
    Anagnostopoulos, Argyrios
    Alexiadis, Alessio
    Ding, Yulong
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2021, 160 (160)
  • [3] Convective transport in nanofluids
    Buongiorno, J
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2006, 128 (03): : 240 - 250
  • [4] Carrillo-Berdugo I., 2021, APPL ENERGY MAT, V3, p9246
  • [5] Interfacial molecular layering enhances specific heat of nanofluids: Evidence from molecular dynamics
    Carrillo-Berdugo, Ivan
    Grau-Crespo, Ricardo
    Zorrilla, David
    Navas, Javier
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2021, 325
  • [6] Determination of key parameters for sizing the heliostat field and thermal energy storage in solar tower power plants
    Chen, Rui
    Rao, Zhenghua
    Liao, Shengming
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2018, 177 : 385 - 394
  • [7] Experimental study on thermophysical properties of molten salt nanofluids prepared by high-temperature melting
    Chen, Xia
    Wu, Yu-ting
    Zhang, Lu-di
    Wang, Xin
    Ma, Chong-fang
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 191 : 209 - 217
  • [8] Experimental study on the specific heat and stability of molten salt nanofluids prepared by high-temperature melting
    Chen, Xia
    Wu, Yu-ting
    Zhang, Lu-di
    Wang, Xin
    Ma, Chong-fang
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 176 : 42 - 48
  • [9] Molecular dynamics simulations of the thermodynamic properties and local structures on molten alkali carbonate Na2CO3
    Du, Lichan
    Xie, Wenjun
    Ding, Jing
    Lu, Jianfeng
    Wei, XiaoLan
    Wang, Weilong
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 131 : 41 - 51
  • [10] Study of viscosity and heat capacity characteristics of molten salt nanofluids for thermal energy storage
    El Far, Baha
    Rizvi, Syed Muhammad Mujtaba
    Nayfeh, Yousof
    Shin, Donghyun
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 210