Constructing Symbolic Representations for High-Level Planning
被引:0
作者:
Konidaris, George
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Comp Sci & Artificial Intelligence Lab, 32 Vassar St, Cambridge, MA 02139 USAMIT, Comp Sci & Artificial Intelligence Lab, 32 Vassar St, Cambridge, MA 02139 USA
Konidaris, George
[1
]
Kaelbling, Leslie Pack
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Comp Sci & Artificial Intelligence Lab, 32 Vassar St, Cambridge, MA 02139 USAMIT, Comp Sci & Artificial Intelligence Lab, 32 Vassar St, Cambridge, MA 02139 USA
Kaelbling, Leslie Pack
[1
]
Lozano-Perez, Tomas
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Comp Sci & Artificial Intelligence Lab, 32 Vassar St, Cambridge, MA 02139 USAMIT, Comp Sci & Artificial Intelligence Lab, 32 Vassar St, Cambridge, MA 02139 USA
Lozano-Perez, Tomas
[1
]
机构:
[1] MIT, Comp Sci & Artificial Intelligence Lab, 32 Vassar St, Cambridge, MA 02139 USA
来源:
PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE
|
2014年
基金:
美国国家科学基金会;
关键词:
MOTION;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
We consider the problem of constructing a symbolic description of a continuous, low-level environment for use in planning. We show that symbols that can represent the preconditions and effects of an agent's actions are both necessary and sufficient for high-level planning. This eliminates the symbol design problem when a representation must be constructed in advance, and in principle enables an agent to autonomously learn its own symbolic representations. The resulting representation can be converted into PDDL, a canonical high-level planning representation that enables very fast planning.