Impact of Temperature and Discharge Rate on the Aging of a LiCoO2/LiNi0.8Co0.15Al0.05O2 Lithium-Ion Pouch Cell

被引:88
作者
Wu, Yao [1 ]
Keil, Peter [1 ]
Schuster, Simon F. [1 ]
Jossen, Andreas [1 ]
机构
[1] Tech Univ Munich, Inst Elect Energy Storage Technol, D-80333 Munich, Germany
关键词
DIFFERENTIAL VOLTAGE ANALYSES; COMPOSITE POSITIVE ELECTRODE; CYCLE LIFE; HIGH-POWER; CAPACITY FADE; ELECTROCHEMICAL INVESTIGATIONS; THERMAL-STABILITY; FADING MECHANISM; CATHODE MATERIAL; BATTERIES;
D O I
10.1149/2.0401707jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This paper presents a lithium-ion battery aging study in which pouch cells comprising a LiCoO2/LiNi0.8Co0.15Al0.05O2 blended cathode and a graphite anode are examined. The study focuses on the impact of temperature and discharge rate on the cycle life of the tested cells. Compared to the aging behavior of other lithium-ion cells in the literature, the cells tested here are less sensitive to the discharge rate but more vulnerable to low temperature cycling. The vulnerability to low temperature mainly comes from cathode degradation, especially of the LiCoO2 component. This is identified by electrochemical impedance spectroscopy, differential voltage analysis and incremental capacity analysis. The cells are able to achieve 3000-5000 cycles before reaching a capacity fade of 20%, also at higher discharge rates up to 5C. All in all, the high discharge rate capability could be a general advantage of pouch cells due to less mechanical and thermal stress in their geometry. Furthermore, more attention should be paid to the cathode health in low temperature applications of lithium-ion cells containing layered oxides. This paper focuses mainly on non-invasive aging detection methods for lithium-ion cells. Post-mortem results will be published in a following paper. (C) The Author(s) 2017. Published by ECS. All rights reserved.
引用
收藏
页码:A1438 / A1445
页数:8
相关论文
共 74 条
[1]   Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation [J].
Andre, D. ;
Meiler, M. ;
Steiner, K. ;
Wimmer, Ch ;
Soczka-Guth, T. ;
Sauer, D. U. .
JOURNAL OF POWER SOURCES, 2011, 196 (12) :5334-5341
[2]   Electrochemical investigations of cobalt-doped LiMn2O4 as cathode material for lithium-ion batteries [J].
Arora, P ;
Popov, BN ;
White, RE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (03) :807-815
[3]   New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries [J].
Aurbach, D ;
Markovsky, B ;
Levi, MD ;
Levi, E ;
Schechter, A ;
Moshkovich, M ;
Cohen, Y .
JOURNAL OF POWER SOURCES, 1999, 81 :95-111
[4]   A study on the impact of lithium-ion cell relaxation on electrochemical impedance spectroscopy [J].
Barai, Anup ;
Chouchelamane, Gael H. ;
Guo, Yue ;
McGordon, Andrew ;
Jennings, Paul .
JOURNAL OF POWER SOURCES, 2015, 280 :74-80
[5]   Discrimination of degradation processes in lithium-ion cells based on the sensitivity of aging indicators towards capacity loss [J].
Bauer, Marius ;
Guenther, Clemens ;
Kasper, Michael ;
Petzl, Mathias ;
Danzer, Michael A. .
JOURNAL OF POWER SOURCES, 2015, 283 :494-504
[6]   Differential voltage analyses of high-power, lithium-ion cells 1. Technique and application [J].
Bloom, I ;
Jansen, AN ;
Abraham, DP ;
Knuth, J ;
Jones, SA ;
Battaglia, VS ;
Henriksen, GL .
JOURNAL OF POWER SOURCES, 2005, 139 (1-2) :295-303
[7]   Differential voltage analyses of high-power lithium-ion cells 2. Applications [J].
Bloom, I ;
Christophersen, J ;
Gering, K .
JOURNAL OF POWER SOURCES, 2005, 139 (1-2) :304-313
[8]   Differential voltage analyses of high-power lithium-ion cells - 3. Another anode phenomenon [J].
Bloom, Ira ;
Christophersen, Jon P. ;
Abraham, Daniel P. ;
Gering, Kevin L. .
JOURNAL OF POWER SOURCES, 2006, 157 (01) :537-542
[9]   Differential voltage analyses of high-power lithium-ion cells. 4. Cells containing NMC [J].
Bloom, Ira ;
Walker, Lee K. ;
Basco, John K. ;
Abraham, Daniel P. ;
Christophersen, Jon P. ;
Ho, Chinh D. .
JOURNAL OF POWER SOURCES, 2010, 195 (03) :877-882
[10]   Inhomogeneous degradation of graphite anodes in automotive lithium ion batteries under low-temperature pulse cycling conditions [J].
Burow, Daniel ;
Sergeeva, Kseniya ;
Calles, Simon ;
Schorb, Klaus ;
Boerger, Alexander ;
Roth, Christina ;
Heitjans, Paul .
JOURNAL OF POWER SOURCES, 2016, 307 :806-814