Blockchain-Based Federated Learning for Device Failure Detection in Industrial IoT

被引:182
|
作者
Zhang, Weishan [1 ]
Lu, Qinghua [2 ,3 ]
Yu, Qiuyu [1 ]
Li, Zhaotong [1 ]
Liu, Yue [2 ,3 ]
Lo, Sin Kit [2 ,3 ]
Chen, Shiping [2 ,3 ]
Xu, Xiwei [2 ,3 ]
Zhu, Liming [2 ,3 ]
机构
[1] China Univ Petr East China, Coll Comp Sci & Technol, Qingdao 266580, Peoples R China
[2] CSIRO, Data61, Sydney, NSW 2015, Australia
[3] Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW 2052, Australia
基金
中国国家自然科学基金;
关键词
Collaborative work; Data models; Blockchain; Servers; Computational modeling; Training; AI; blockchain; edge computing; failure detection; federated learning; IoT; machine learning; TRANSACTIONS;
D O I
10.1109/JIOT.2020.3032544
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Device failure detection is one of most essential problems in Industrial Internet of Things (IIoT). However, in conventional IIoT device failure detection, client devices need to upload raw data to the central server for model training, which might lead to disclosure of sensitive business data. Therefore, in this article, to ensure client data privacy, we propose a blockchain-based federated learning approach for device failure detection in IIoT. First, we present a platform architecture of blockchain-based federated learning systems for failure detection in IIoT, which enables verifiable integrity of client data. In the architecture, each client periodically creates a Merkle tree in which each leaf node represents a client data record, and stores the tree root on a blockchain. Furthermore, to address the data heterogeneity issue in IIoT failure detection, we propose a novel centroid distance weighted federated averaging (CDW_FedAvg) algorithm taking into account the distance between positive class and negative class of each client data set. In addition, to motivate clients to participate in federated learning, a smart contact-based incentive mechanism is designed depending on the size and the centroid distance of client data used in local model training. A prototype of the proposed architecture is implemented with our industry partner, and evaluated in terms of feasibility, accuracy, and performance. The results show that the approach is feasible, and has satisfactory accuracy and performance.
引用
收藏
页码:5926 / 5937
页数:12
相关论文
共 50 条
  • [21] HBFL: A hierarchical blockchain-based federated learning framework for collaborative IoT intrusion detection
    Sarhan, Mohanad
    Lo, Wai Weng
    Layeghy, Siamak
    Portmann, Marius
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103
  • [22] Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT
    Lu, Yunlong
    Huang, Xiaohong
    Dai, Yueyue
    Maharjan, Sabita
    Zhang, Yan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (06) : 4177 - 4186
  • [23] A Novel Resource Management Framework for Blockchain-Based Federated Learning in IoT Networks
    Mishra, Aman
    Garg, Yash
    Pandey, Om Jee
    Shukla, Mahendra K.
    Vasilakos, Athanasios V.
    Hegde, Rajesh M.
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2024, 9 (04): : 648 - 660
  • [24] Blockchain-Based Federated Learning: A Survey and New Perspectives
    Ning, Weiguang
    Zhu, Yingjuan
    Song, Caixia
    Li, Hongxia
    Zhu, Lihui
    Xie, Jinbao
    Chen, Tianyu
    Xu, Tong
    Xu, Xi
    Gao, Jiwei
    APPLIED SCIENCES-BASEL, 2024, 14 (20):
  • [25] Blockchain-Based Distributed Federated Learning in Smart Grid
    Antal, Marcel
    Mihailescu, Vlad
    Cioara, Tudor
    Anghel, Ionut
    MATHEMATICS, 2022, 10 (23)
  • [26] BPS-FL: Blockchain-Based Privacy-Preserving and Secure Federated Learning
    Yu, Jianping
    Yao, Hang
    Ouyang, Kai
    Cao, Xiaojun
    Zhang, Lianming
    BIG DATA MINING AND ANALYTICS, 2025, 8 (01): : 189 - 213
  • [27] ScaleSFL: A Sharding Solution for Blockchain-Based Federated Learning
    Madill, Evan
    Nguyen, Ben
    Leung, Carson K.
    Rouhani, Sara
    BSCI'22: PROCEEDINGS OF THE FOURTH ACM INTERNATIONAL SYMPOSIUM ON BLOCKCHAIN AND SECURE CRITICAL INFRASTRUCTURE, 2022, : 95 - 106
  • [28] Adaptive Resource Allocation for Blockchain-Based Federated Learning in Internet of Things
    Zhang, Jiaxiang
    Liu, Yiming
    Qin, Xiaoqi
    Xu, Xiaodong
    Zhang, Ping
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (12) : 10621 - 10635
  • [29] Blockchain-Based Self-Sovereign Identity: Taking Control of Identity in Federated Learning
    Zeydan, Engin
    Blanco, Luis
    Mangues-Bafalluy, Josep
    Arslan, Suayb S.
    Turk, Yekta
    Yadav, Awaneesh Kumar
    Liyanage, Madhusanka
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 5764 - 5781
  • [30] Blockchain-Based Federated Learning for Intelligent Control in Heavy Haul Railway
    Hua, Gaofeng
    Zhu, Li
    Wu, Jinsong
    Shen, Chunzi
    Zhou, Linyan
    Lin, Qingqing
    IEEE ACCESS, 2020, 8 (08): : 176830 - 176839