Blockchain-Based Federated Learning for Device Failure Detection in Industrial IoT

被引:182
|
作者
Zhang, Weishan [1 ]
Lu, Qinghua [2 ,3 ]
Yu, Qiuyu [1 ]
Li, Zhaotong [1 ]
Liu, Yue [2 ,3 ]
Lo, Sin Kit [2 ,3 ]
Chen, Shiping [2 ,3 ]
Xu, Xiwei [2 ,3 ]
Zhu, Liming [2 ,3 ]
机构
[1] China Univ Petr East China, Coll Comp Sci & Technol, Qingdao 266580, Peoples R China
[2] CSIRO, Data61, Sydney, NSW 2015, Australia
[3] Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW 2052, Australia
基金
中国国家自然科学基金;
关键词
Collaborative work; Data models; Blockchain; Servers; Computational modeling; Training; AI; blockchain; edge computing; failure detection; federated learning; IoT; machine learning; TRANSACTIONS;
D O I
10.1109/JIOT.2020.3032544
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Device failure detection is one of most essential problems in Industrial Internet of Things (IIoT). However, in conventional IIoT device failure detection, client devices need to upload raw data to the central server for model training, which might lead to disclosure of sensitive business data. Therefore, in this article, to ensure client data privacy, we propose a blockchain-based federated learning approach for device failure detection in IIoT. First, we present a platform architecture of blockchain-based federated learning systems for failure detection in IIoT, which enables verifiable integrity of client data. In the architecture, each client periodically creates a Merkle tree in which each leaf node represents a client data record, and stores the tree root on a blockchain. Furthermore, to address the data heterogeneity issue in IIoT failure detection, we propose a novel centroid distance weighted federated averaging (CDW_FedAvg) algorithm taking into account the distance between positive class and negative class of each client data set. In addition, to motivate clients to participate in federated learning, a smart contact-based incentive mechanism is designed depending on the size and the centroid distance of client data used in local model training. A prototype of the proposed architecture is implemented with our industry partner, and evaluated in terms of feasibility, accuracy, and performance. The results show that the approach is feasible, and has satisfactory accuracy and performance.
引用
收藏
页码:5926 / 5937
页数:12
相关论文
共 50 条
  • [1] Blockchain-Based Decentralized Federated Learning With On-Chain Model Aggregation and Incentive Mechanism for Industrial IoT
    Yang, Qing
    Xu, Wei
    Wang, Taotao
    Wang, Hao
    Wu, Xiaoxiao
    Cao, Bin
    Zhang, Shengli
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 6420 - 6429
  • [2] A Blockchain-Based Model Migration Approach for Secure and Sustainable Federated Learning in IoT Systems
    Zhang, Cheng
    Xu, Yang
    Elahi, Haroon
    Zhang, Deyu
    Tan, Yunlin
    Chen, Junxian
    Zhang, Yaoxue
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (08) : 6574 - 6585
  • [3] BAFL: A Blockchain-Based Asynchronous Federated Learning Framework
    Feng, Lei
    Zhao, Yiqi
    Guo, Shaoyong
    Qiu, Xuesong
    Li, Wenjing
    Yu, Peng
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (05) : 1092 - 1103
  • [4] Toward Trustworthy AI: Blockchain-Based Architecture Design for Accountability and Fairness of Federated Learning Systems
    Lo, Sin Kit
    Liu, Yue
    Lu, Qinghua
    Wang, Chen
    Xu, Xiwei
    Paik, Hye-Young
    Zhu, Liming
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (04) : 3276 - 3284
  • [5] Bift: A Blockchain-Based Federated Learning System for Connected and Autonomous Vehicles
    He, Ying
    Huang, Ke
    Zhang, Guangzheng
    Yu, F. Richard
    Chen, Jianyong
    Li, Jianqiang
    IEEE INTERNET OF THINGS JOURNAL, 2021, 9 (14) : 12311 - 12322
  • [6] CoCFL: A Lightweight Blockchain-based Federated Learning Framework in IoT Context
    Wang, Jianrong
    Shi, Yang
    Hu, Dengcheng
    Li, Keqiu
    Liu, Xiulong
    2024 IEEE 44TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, ICDCS 2024, 2024, : 1086 - 1096
  • [7] Federated Intrusion Detection in Blockchain-Based Smart Transportation Systems
    Abdel-Basset, Mohamed
    Moustafa, Nour
    Hawash, Hossam
    Razzak, Imran
    Sallam, Karam M.
    Elkomy, Osama M.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (03) : 2523 - 2537
  • [8] A Blockchain-Based Decentralized Federated Learning Framework with Committee Consensus
    Li, Yuzheng
    Chen, Chuan
    Liu, Nan
    Huang, Huawei
    Zheng, Zibin
    Yan, Qiang
    IEEE NETWORK, 2021, 35 (01): : 234 - 241
  • [9] BASS: A Blockchain-Based Asynchronous SignSGD Architecture for Efficient and Secure Federated Learning
    Xu, Chenhao
    Ge, Jiaqi
    Deng, Yao
    Gao, Longxiang
    Zhang, Mengshi
    Li, Yong
    Zhou, Wanlei
    Zheng, Xi
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (06) : 5388 - 5402
  • [10] A blockchain-based federated learning mechanism for privacy preservation of healthcare IoT data
    Moulahi, Wided
    Jdey, Imen
    Moulahi, Tarek
    Alawida, Moatsum
    Alabdulatif, Abdulatif
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 167