On quantizing nonnilpotent coadjoint orbits of semisimple Lie groups

被引:0
|
作者
Gotay, MJ [1 ]
机构
[1] Univ Hawaii, Dept Math, Honolulu, HI 96822 USA
基金
美国国家科学基金会;
关键词
Poisson algebras; quantization; semisimple Lie groups;
D O I
10.1023/A:1021697031070
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that there is no consistent polynomial quantization of the coordinate ring of a nonnilpotent coadjoint orbit of a semisimple Lie group.
引用
收藏
页码:47 / 50
页数:4
相关论文
共 50 条
  • [21] Coadjoint Orbits, Cocycles and Gravitational Wess-Zumino
    Alekseev, Anton
    Shatashvili, Samson L.
    REVIEWS IN MATHEMATICAL PHYSICS, 2018, 30 (06)
  • [22] Global behavior of the heat kernel associated with certain sub-Laplacians on semisimple Lie groups
    Ostellari, P
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 199 (02) : 521 - 534
  • [23] Explicit Equivariant Quantization on Coadjoint Orbits of GL(n, C)
    J. Donin
    J. Donin
    A. Mudrov
    Letters in Mathematical Physics, 2002, 62 : 17 - 32
  • [24] Explicit equivariant quantization on coadjoint orbits of GL(n, C)
    Donin, J
    Mudrov, A
    LETTERS IN MATHEMATICAL PHYSICS, 2002, 62 (01) : 17 - 32
  • [25] Generating semisimple groups by tori
    Abels, H.
    Vinberg, E. B.
    JOURNAL OF ALGEBRA, 2011, 328 (01) : 114 - 121
  • [26] Lagrangian multiforms on coadjoint orbits for finite-dimensional integrable systems
    Caudrelier, Vincent
    Dell'Atti, Marta
    Singh, Anup Anand
    LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (01)
  • [27] Rigidity of Furstenberg entropy for semisimple Lie group actions
    Nevo, A
    Zimmer, RJ
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2000, 33 (03): : 321 - 343
  • [28] The Gromov’s centralizer theorem for semisimple Lie group actions
    Rosales-Ortega J.
    Boletín de la Sociedad Matemática Mexicana, 2017, 23 (2) : 825 - 845
  • [29] ENSEMBLE CONTROL ON LIE GROUPS
    Zhang, Wei
    LI, Jr-Shin
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (05) : 3805 - 3827
  • [30] Semigroups in symmetric Lie groups
    dos Santos, Laercio J.
    San Martin, Luiz A. B.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2007, 18 (01): : 135 - 146