Factorisations for partition functions of random Hermitian matrix models

被引:4
|
作者
Jackson, DM
Perry, MJ
Visentin, TI
机构
[1] UNIV CAMBRIDGE, DEPT APPL MATH & THEORET PHYS, CAMBRIDGE CB3 9EW, ENGLAND
[2] UNIV WINNIPEG, DEPT MATH, WINNIPEG, MB R3B 2E9, CANADA
关键词
D O I
10.1007/BF02103715
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The partition function Z(N), for Hermitian-complex matrix models can be expressed as an explicit integral over R(N), where N is a positive integer. Such an integral also occurs in connexion with random surfaces and models of two dimensional quantum gravity. We show that Z(N) can be expressed as the product of two partition functions, evaluated at translated arguments, for another model, giving an explicit connexion between the two models. We also give an alternative computation of the partition function for the phi(4)-model. The approach is an algebraic one and holds for the functions regarded as formal power series in the appropriate ring.
引用
收藏
页码:25 / 59
页数:35
相关论文
共 50 条
  • [31] Differentiable Random Partition Models
    Sutter, Thomas M.
    Ryser, Alain
    Liebeskind, Joram
    Vogt, Julia E.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [32] Non-hermitian random matrix theory: Method of hermitian reduction
    Feinberg, J
    Zee, A
    NUCLEAR PHYSICS B, 1997, 504 (03) : 579 - 608
  • [33] Gap Probabilities for Double Intervals in Hermitian Random Matrix Ensembles as τ-Functions – Spectrum Singularity Case
    N. S. Witte
    Letters in Mathematical Physics, 2004, 68 : 139 - 149
  • [34] Pseudo-Hermitian random matrix theory
    Srivastava, Shashi C. L.
    Jain, Sudhir R.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2013, 61 (2-3): : 276 - 290
  • [35] Probability density of the determinant of a random Hermitian matrix
    Mehta, ML
    Normand, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (23): : 5377 - 5391
  • [36] Gap probabilities for double intervals in Hermitian random matrix ensembles as τ-functions -: Spectrum singularity case
    Witte, NS
    LETTERS IN MATHEMATICAL PHYSICS, 2004, 68 (03) : 139 - 149
  • [37] Relaxation fluctuations of correlation functions: Spin and random matrix models
    Pathak, Tanay
    PHYSICAL REVIEW E, 2025, 111 (02)
  • [38] Partition theorems for factorisations of ascending parameter words
    Fouché, WL
    Pretorius, LM
    Swanepoel, CJ
    DISCRETE MATHEMATICS, 1999, 197 (1-3) : 331 - 350
  • [39] Partition theorems for factorisations of ascending parameter words
    Fouche, W.L.
    Pretorius, L.M.
    Swanepoel, C.J.
    Discrete Mathematics, 1999, 197-198 : 331 - 350
  • [40] ANALYZING THE SOLUTIONS OF HERMITIAN MATRIX MODELS
    CHAUDHURI, S
    LYKKEN, JD
    NUCLEAR PHYSICS B, 1991, 367 (03) : 614 - 636