Parameter estimation for fractional transport: A particle-tracking approach

被引:66
作者
Chakraborty, Paramita [1 ]
Meerschaert, Mark M. [1 ]
Lim, Chae Young [1 ]
机构
[1] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48823 USA
基金
美国国家科学基金会;
关键词
ADVECTION-DISPERSION EQUATION; SOLUTE TRANSPORT; TIME; WATER; TRACER; FLOW; MODEL; RIVER;
D O I
10.1029/2008WR007577
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Space-fractional advection-dispersion models provide attractive alternatives to the classical advection-dispersion equation for model applications that exhibit early arrivals and plume skewness. This paper develops a flexible method for estimating the parameters of the fractional transport model on the basis of spatial plume snapshots or temporal breakthrough curve data. A particle-tracking approach provides error bars for the parameter estimates and a general method for model fitting and comparison via optimal weighted least squares. A simple model of concentration variance, based on the particle-tracking approach, identifies the optimal weights.
引用
收藏
页数:15
相关论文
共 55 条
[1]   Probability density function of non-reactive solute concentration in heterogeneous porous formations [J].
Bellin, Alberto ;
Tonina, Daniele .
JOURNAL OF CONTAMINANT HYDROLOGY, 2007, 94 (1-2) :109-125
[2]   SIMULATION OF SOLUTE TRANSPORT IN A MOUNTAIN POOL-AND-RIFFLE STREAM - A TRANSIENT STORAGE MODEL [J].
BENCALA, KE ;
WALTERS, RA .
WATER RESOURCES RESEARCH, 1983, 19 (03) :718-724
[3]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[4]   Application of a fractional advection-dispersion equation [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1403-1412
[5]   Fractional dispersion, Levy motion, and the MADE tracer tests [J].
Benson, DA ;
Schumer, R ;
Meerschaert, MM ;
Wheatcraft, SW .
TRANSPORT IN POROUS MEDIA, 2001, 42 (1-2) :211-240
[6]   Modeling non-Fickian transport in geological formations as a continuous time random walk [J].
Berkowitz, Brian ;
Cortis, Andrea ;
Dentz, Marco ;
Scher, Harvey .
REVIEWS OF GEOPHYSICS, 2006, 44 (02)
[7]   STOCHASTIC FOUNDATIONS OF THEORY OF WATER-FLOW THROUGH UNSATURATED SOIL [J].
BHATTACHARYA, RN ;
GUPTA, VK ;
SPOSITO, G .
WATER RESOURCES RESEARCH, 1976, 12 (03) :503-512
[8]   A continuous time random walk approach to the stream transport of solutes [J].
Boano, F. ;
Packman, A. I. ;
Cortis, A. ;
Revelli, R. ;
Ridolfi, L. .
WATER RESOURCES RESEARCH, 2007, 43 (10)
[9]  
BOGGS JM, TR102072 EL POW RES
[10]   Non-Fickian transport in homogeneous unsaturated repacked sand [J].
Bromly, M ;
Hinz, C .
WATER RESOURCES RESEARCH, 2004, 40 (07) :W074021-W0740212