Overexpression of an Apocynum venetum flavonols synthetase gene confers salinity stress tolerance to transgenic tobacco plants

被引:37
作者
Wang, Meng [1 ]
Ren, Tingting [2 ]
Huang, Ruihuan [2 ,3 ]
Li, Yiqiang [2 ]
Zhang, Chengsheng [2 ]
Xu, Zongchang [2 ]
机构
[1] Qingdao Agr Univ, Coll Agron, Qingdao 266109, Peoples R China
[2] Chinese Acad Agr Sci, Marine Agr Res Ctr, Tobacco Res Inst, Qingdao 266101, Peoples R China
[3] China Tobacco Guangxi Ind Co Ltd, Nanming 530000, Peoples R China
基金
中国国家自然科学基金;
关键词
Apocynum venetum; Flavonoids; Gene expression; Germination rate; K+/Na+ ratio; Root growth; Salinity; ANTIOXIDANT ACTIVITIES; BIOSYNTHESIS; PEROXIDASE; MECHANISMS; LEAVES; IDENTIFICATION; CAROTENOIDS; FLAVANONE; SYNTHASE; CULTURES;
D O I
10.1016/j.plaphy.2021.03.034
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Soil salinity is a major limiting factor for agricultural production, threatening food security worldwide. A thorough understanding of the mechanisms underlying plant responses is required to effectively counter its deleterious effects on crop productivity. Total flavonoid accumulation reportedly improves salinity tolerance in many crops. Therefore, we isolated the full-length cDNA of a flavonol synthetase (FLS) gene from Apocynum venetum (AvFLS). The gene contained a 1008-bp open reading frame encoding a protein composed of 335 amino acid residues. Multiple sequence alignment showed that the AvFLS protein was highly homologous to FLSs from other plants. AvFLS was expressed in leaves, stems, roots, flowers, and germinated seeds. Expression pattern analysis revealed that AvFLS was significantly induced by salinity stress. AvFLS overexpression in tobacco positively affected the development and growth of transgenic plants under salinity stress: root and seedling growth were inhibited to a lesser extent, while seed germination rate increased. Additionally, the overexpression of AvFLS under salinity stress resulted in an increase in total flavonoid content (1.63 mg g(-1) in wild-type samples and 4.63 mg g(-1) on average in transgenic samples), which accompanied the increase in the activity of antioxidant enzymes and inhibited the production of reactive oxygen species. Further, AvFLS-overexpressing transgenic tobacco plants absorbed more K+ than wild type plants, leading to an increased K+/Na+ ratio, which in turn contributed to the maintenance of Na+/K+ homeostasis. These findings suggest that an AvFLS-induced increase in total flavonoid content enhanced plant salinity tolerance, implying the importance of AvFLS gene responses to salinity stress.
引用
收藏
页码:667 / 676
页数:10
相关论文
共 50 条
  • [1] Overexpression of a Flavonol Synthase Gene from Apocynum venetum Improves the Salinity Stress Tolerance of Transgenic Arabidopsis thaliana
    Guo, Xiaonong
    Li, Jing
    Cai, Deyu
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2024, 24 (02) : 2317 - 2333
  • [2] Overexpression of an Apocynum venetum DEAD-Box Helicase Gene (AvDH1) in Cotton Confers Salinity Tolerance and Increases Yield in a Saline Field
    Chen, Jie
    Wan, Sibao
    Liu, Huaihua
    Fan, Shuli
    Zhang, Yujuan
    Wang, Wei
    Xia, Minxuan
    Yuan, Rui
    Deng, Fenni
    Shen, Fafu
    FRONTIERS IN PLANT SCIENCE, 2016, 6
  • [3] Overexpression of sugarcane gene SoSnRK2.1 confers drought tolerance in transgenic tobacco
    Thi-Thu Phan
    Sun, Bo
    Niu, Jun-Qi
    Tan, Qin-Liang
    Li, Jian
    Yang, Li-Tao
    Li, Yang-Rui
    PLANT CELL REPORTS, 2016, 35 (09) : 1891 - 1905
  • [4] A Novel Stress-Induced Sugarcane Gene Confers Tolerance to Drought, Salt and Oxidative Stress in Transgenic Tobacco Plants
    Begcy, Kevin
    Mariano, Eduardo D.
    Gentile, Agustina
    Lembke, Carolina G.
    Zingaretti, Sonia Marli
    Souza, Glaucia M.
    Menossi, Marcelo
    PLOS ONE, 2012, 7 (09):
  • [5] Overexpression of Malus hupehensis MhSHN1 Gene Enhances Salt and Osmotic Stress Tolerance in Transgenic Tobacco Plants
    Zhang, J. Y.
    Luo, H. T.
    Guo, Z. R.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2018, 65 (06) : 857 - 864
  • [6] Overexpression of an Apocynum venetum DEAD-Box Helicase Gene (AvDH1) in Cotton Confers Salinity Tolerance and Increases Yield in a Saline Field (vol 6, 1227, 2015)
    Chen, Jie
    Wan, Sibao
    Liu, Huaihua
    Fan, Shuli
    Zhang, Yujuan
    Wang, Wei
    Xia, Minxuan
    Yuan, Rui
    Deng, Fenni
    Shen, Fafu
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [7] Heterologous overexpression of Apocynum venetum flavonoids synthetase genes improves Arabidopsis thaliana salt tolerance by activating the IAA and JA biosynthesis pathways
    Zhang, Mengchao
    Lu, Xueli
    Ren, Tingting
    Marowa, Prince
    Meng, Chen
    Wang, Juying
    Yang, Hui
    Li, Chunhua
    Zhang, Li
    Xu, Zongchang
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [8] Overexpression of Glyoxalase III gene in transgenic sugarcane confers enhanced performance under salinity stress
    Manoj Vadakkenchery Mohanan
    Anunanthini Pushpanathan
    Sarath Padmanabhan
    Thelakat Sasikumar
    Ashwin Narayan Jayanarayanan
    Dharshini Selvarajan
    Sathishkumar Ramalingam
    Bakshi Ram
    Appunu Chinnaswamy
    Journal of Plant Research, 2021, 134 : 1083 - 1094
  • [9] An Arabidopsis Mitochondrial Uncoupling Protein Confers Tolerance to Drought and Salt Stress in Transgenic Tobacco Plants
    Begcy, Kevin
    Mariano, Eduardo D.
    Mattiello, Lucia
    Nunes, Alessandra V.
    Mazzafera, Paulo
    Maia, Ivan G.
    Menossi, Marcelo
    PLOS ONE, 2011, 6 (08):
  • [10] Overexpression of Malus hupehensis MhSHN1 Gene Enhances Salt and Osmotic Stress Tolerance in Transgenic Tobacco Plants
    J. Y. Zhang
    H. T. Luo
    Z. R. Guo
    Russian Journal of Plant Physiology, 2018, 65 : 857 - 864