Expression and purification of a recombinant amyloidogenic peptide from transthyretin for solid-state NMR spectroscopy

被引:4
|
作者
Nadaud, Philippe S. [1 ]
Sarkar, Mohosin [1 ]
Wu, Bo [1 ]
MacPhee, Cait E. [2 ]
Magliery, Thomas J. [1 ,3 ]
Jaroniec, Christopher P. [1 ]
机构
[1] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA
[2] Univ Edinburgh, SUPA, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Ohio State Univ, Dept Biochem, Columbus, OH 43210 USA
基金
美国国家科学基金会; 英国生物技术与生命科学研究理事会;
关键词
Fusion protein; GB1; Recombinant human transthyretin 105-115; Escherichia coli BL21(DE3); Ni2+ affinity chromatography; Amyloid fibrils; Solid-state NMR spectroscopy; ALPHA-SYNUCLEIN FIBRILS; BETA-SHEET STRUCTURE; HUMAN PRION PROTEIN; ANGLE-SPINNING NMR; ESCHERICHIA-COLI; HIGH-RESOLUTION; MOLECULAR-CONFORMATION; STRUCTURAL MODEL; RESIDUES; SYSTEM;
D O I
10.1016/j.pep.2009.09.017
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We describe the expression and purification of a model amyloidogenic peptide comprising residues 105-115 of human transthyretin (TTR105-115). Recombinant TTR105-115, which does not contain any non-native residues, was prepared as part of a fusion protein construct with a highly soluble B1 immunoglobulin binding domain of protein G (GB1), with typical yields of similar to 4 mg/L of uniformly C-13,N-15-enriched HPLC-purified peptide per liter of minimal media culture. Amyloid fibrils formed by recombinant TTR105-115 were characterized by transmission electron microscopy and solid-state NMR spectroscopy, and found to be comparable to synthetic TTR105-115 fibrils. These results establish recombinant TTR105-115 as a valuable model system for the development of new solid-state NMR techniques for the atomic-level characterization of amyloid architecture. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:101 / 108
页数:8
相关论文
共 50 条
  • [41] Applications of solid-state NMR spectroscopy in environmental science
    Wang, Qian
    Nielsen, Ulla Gro
    SOLID STATE NUCLEAR MAGNETIC RESONANCE, 2020, 110 (110)
  • [42] Broadband-PISEMA solid-state NMR spectroscopy
    Yamamoto, K
    Lee, DK
    Ramamoorthy, A
    CHEMICAL PHYSICS LETTERS, 2005, 407 (4-6) : 289 - 293
  • [43] Trends in solid-state NMR spectroscopy and their relevance for bioanalytics
    Paasch, Silvia
    Brunner, Eike
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 398 (06) : 2351 - 2362
  • [44] Advances of solid-state NMR spectroscopy in material sciences
    Abraham, Anuji
    Salager, Elodie
    Krishnan, Damodaran
    Su, Yongchao
    MAGNETIC RESONANCE IN CHEMISTRY, 2020, 58 (11) : 987 - 987
  • [45] Chlorine, Bromine, and Iodine Solid-State NMR Spectroscopy
    Widdifield, Cory M.
    Chapman, Rebecca P.
    Bryce, David L.
    ANNUAL REPORTS ON NMR SPECTROSCOPY, VOL 66, 2009, 66 : 195 - 326
  • [46] Solid-state NMR spectroscopy in pharmaceutical research and analysis
    Berendt, Robert T.
    Sperger, Diana M.
    Isbester, Paul K.
    Munson, Eric J.
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2006, 25 (10) : 977 - 984
  • [47] RNA structure determination by solid-state NMR spectroscopy
    Alexander Marchanka
    Bernd Simon
    Gerhard Althoff-Ospelt
    Teresa Carlomagno
    Nature Communications, 6
  • [48] Study of paramagnetic chromocenes by solid-state NMR spectroscopy
    Blumel, J
    Herker, M
    Hiller, W
    Kohler, FH
    ORGANOMETALLICS, 1996, 15 (16) : 3474 - 3476
  • [49] Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory
    Kinnun, Jacob J.
    Leftin, Avigdor
    Brown, Michael F.
    JOURNAL OF CHEMICAL EDUCATION, 2013, 90 (01) : 123 - 128
  • [50] OPTO: Automated Optimization for Solid-State NMR Spectroscopy
    Borcik, Collin G.
    Dezonia, Barry
    Ravula, Thirupathi
    Harding, Benjamin D.
    Garg, Rajat
    Rienstra, Chad M.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2025, 147 (04) : 3293 - 3303