Expression and purification of a recombinant amyloidogenic peptide from transthyretin for solid-state NMR spectroscopy

被引:4
|
作者
Nadaud, Philippe S. [1 ]
Sarkar, Mohosin [1 ]
Wu, Bo [1 ]
MacPhee, Cait E. [2 ]
Magliery, Thomas J. [1 ,3 ]
Jaroniec, Christopher P. [1 ]
机构
[1] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA
[2] Univ Edinburgh, SUPA, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Ohio State Univ, Dept Biochem, Columbus, OH 43210 USA
基金
美国国家科学基金会; 英国生物技术与生命科学研究理事会;
关键词
Fusion protein; GB1; Recombinant human transthyretin 105-115; Escherichia coli BL21(DE3); Ni2+ affinity chromatography; Amyloid fibrils; Solid-state NMR spectroscopy; ALPHA-SYNUCLEIN FIBRILS; BETA-SHEET STRUCTURE; HUMAN PRION PROTEIN; ANGLE-SPINNING NMR; ESCHERICHIA-COLI; HIGH-RESOLUTION; MOLECULAR-CONFORMATION; STRUCTURAL MODEL; RESIDUES; SYSTEM;
D O I
10.1016/j.pep.2009.09.017
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We describe the expression and purification of a model amyloidogenic peptide comprising residues 105-115 of human transthyretin (TTR105-115). Recombinant TTR105-115, which does not contain any non-native residues, was prepared as part of a fusion protein construct with a highly soluble B1 immunoglobulin binding domain of protein G (GB1), with typical yields of similar to 4 mg/L of uniformly C-13,N-15-enriched HPLC-purified peptide per liter of minimal media culture. Amyloid fibrils formed by recombinant TTR105-115 were characterized by transmission electron microscopy and solid-state NMR spectroscopy, and found to be comparable to synthetic TTR105-115 fibrils. These results establish recombinant TTR105-115 as a valuable model system for the development of new solid-state NMR techniques for the atomic-level characterization of amyloid architecture. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:101 / 108
页数:8
相关论文
共 50 条
  • [1] Expression and purification of a recombinant peptide from the Alzheimer's β-amyloid protein for solid-state NMR
    Sharpe, S
    Yau, WM
    Tycko, R
    PROTEIN EXPRESSION AND PURIFICATION, 2005, 42 (01) : 200 - 210
  • [2] Peptide structural analysis by solid-state NMR spectroscopy
    Bechinger, B
    Kinder, R
    Helmle, M
    Vogt, TCB
    Harzer, U
    Schinzel, S
    BIOPOLYMERS, 1999, 51 (03) : 174 - 190
  • [3] Bacterial expression and purification of the amyloidogenic peptide PAPf39 for multidimensional NMR spectroscopy
    Shanmuganathan, Aranganathan
    Bishop, Anthony C.
    French, Kinsley C.
    McCallum, Scott A.
    Makhatadze, George I.
    PROTEIN EXPRESSION AND PURIFICATION, 2013, 88 (02) : 196 - 200
  • [4] Solid-state NMR spectroscopy
    Paiva, Stacey-Lynn
    NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [5] Solid-state NMR spectroscopy
    Bernd Reif
    Sharon E. Ashbrook
    Lyndon Emsley
    Mei Hong
    Nature Reviews Methods Primers, 1
  • [6] Solid-state NMR spectroscopy
    Hodgkinson, Paul
    Wimperis, Stephen
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (32) : 6875 - 6875
  • [7] Solid-state NMR spectroscopy
    Dybowski, Cecil
    Bal, Shi
    ANALYTICAL CHEMISTRY, 2008, 80 (12) : 4295 - 4300
  • [8] Cellular solid-state NMR spectroscopy
    Damman, Reinier
    Narasimhan, Siddarth
    Weingarth, Markus
    Baldus, Marc
    Baldus, Marc (m.baldus@uu.nl), 1600, Royal Society of Chemistry (2020-January): : 131 - 151
  • [9] PISEMA solid-state NMR spectroscopy
    Ramamoorthy, A
    Wei, YF
    Lee, DK
    ADVANCES IN SOLID STATE NMR STUDIES OF MATERIALS AND POLYMERS: A SPECIAL VOLUME DEDICATED TO ISAO ANDO, 2004, 52 : 1 - 52
  • [10] Solid-State NMR Spectroscopy of RNA
    Marchanka, Alexander
    Carlomagno, Teresa
    BIOLOGICAL NMR, PT B, 2019, 615 : 333 - 371