CoSe@N-Doped Carbon Nanotubes as a Potassium-Ion Battery Anode with High Initial Coulombic Efficiency and Superior Capacity Retention

被引:127
作者
Liu, Yanzhen [1 ]
Deng, Qiang [1 ]
Li, Youpeng [1 ]
Li, Yijuan [1 ]
Zhong, Wentao [1 ]
Hu, Junhua [2 ]
Ji, Xiaohong [3 ]
Yang, Chenghao [1 ]
Lin, Zhang [1 ]
Huang, Kevin [4 ]
机构
[1] South China Univ Technol, Sch Environm & Energy, New Energy Res Inst, Guangzhou Key Lab Surface Chem Energy Mat, Guangzhou 510006, Peoples R China
[2] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Peoples R China
[3] South China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510641, Peoples R China
[4] Univ South Carolina, Dept Mech Engn, Columbia, SC 29205 USA
基金
中国国家自然科学基金;
关键词
potassium-ion batteries; anode; Co selenide; surface polymerization; electrochemical performance; METAL-ORGANIC FRAMEWORKS; PERFORMANCE LITHIUM-ION; REDUCED GRAPHENE OXIDE; POROUS CARBON; NANOSHEETS; SHELL;
D O I
10.1021/acsnano.0c08094
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Potassium-ion batteries (KIBs) have gained significant interest in recent years from the battery research community because potassium is an earth-abundant and redox-active metal, thus having the potential to replace lithium-ion batteries for sustainable energy storage. However, the current development of KIBs is critically challenged by the lack of competitive electrode materials that can reversibly store large ink amounts of K+ and electrolyte systems that are compatible with the electrode materials. Here, we report that cobalt monochalcogenide (CoSe) nanoparticles confined in N-doped carbon nanotubes (CoSe@NCNTs) can be used as a K+-storing electrode. The CoSe@NCNT composite exhibits a high initial Columbic efficiency (95%), decent capacity (435 mAh g(-1) at 0.1 A g(-1)), and stability (282 mAh g(-1) 2.0 A g(-1) after 500 cycles) in a 1 M KPF6-DME electrolyte with K as the anode over the voltage range from 0.01 to 3.0 V. A full KIB cell consisting of this anode and a Prussian blue cathode also shows excellent electrochemical performance (228 mAh g(-1) at 0.5 A g(-1) after 200 cycles). We show that the NCNT shell is effective not only in providing high electronic conductivity for fast charge transfer but also in accommodating the volume changes during cycling. We also provide experimental and theoretical evidence that KPF6 in the electrolyte plays a catalytic role in promoting the formation of a polymer-like film on the CoSe surface during the initial activation process, and this amorphous film is of critical importance in preventing the dissolution of polyselenide intermediates into the electrolyte, stabilizing the Co-0/K2Se interface, and realizing the reversibility of Co-0/K2Se conversion.
引用
收藏
页码:1121 / 1132
页数:12
相关论文
共 60 条
[1]   Micron-Sized Nanoporous Antimony with Tunable Porosity for High-Performance Potassium-Ion Batteries [J].
An, Yongling ;
Tian, Yuan ;
Ci, Lijie ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
ACS NANO, 2018, 12 (12) :12932-12940
[2]   Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes [J].
Borodin, Oleg ;
Behl, Wishvender ;
Jow, T. Richard .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (17) :8661-8682
[3]   Stable CoSe2/carbon nanodice@reduced graphene oxide composites for high-performance rechargeable aluminum-ion batteries [J].
Cai, Tonghui ;
Zhao, Lianming ;
Hu, Haoyu ;
Li, Tongge ;
Li, Xiaochen ;
Guo, Sheng ;
Li, Yanpeng ;
Xue, Qingzhong ;
Xing, Wei ;
Yan, Zifeng ;
Wang, Lianzhou .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (09) :2341-2347
[4]   Graphene-Encapsulated FeS2 in Carbon Fibers as High Reversible Anodes for Na+/K+ Batteries in a Wide Temperature Range [J].
Chen, Changmiao ;
Yang, Yincai ;
Tang, Xuan ;
Qiu, Renhua ;
Wang, Shuangyin ;
Cao, Guozhong ;
Zhang, Ming .
SMALL, 2019, 15 (10)
[5]   Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries [J].
Cheng, Xiaolong ;
Li, Dongjun ;
Wu, Ying ;
Xu, Rui ;
Yu, Yan .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (09) :4913-4921
[6]   Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries [J].
Cho, Jung Sang ;
Park, Jin-Sung ;
Kang, Yun Chan .
NANO RESEARCH, 2017, 10 (03) :897-907
[7]   Target construction of ultrathin graphitic carbon encapsulated FeS hierarchical microspheres featuring superior low-temperature lithium/sodium storage properties [J].
Fan, Hong-Hong ;
Li, Huan-Huan ;
Guo, Jin-Zhi ;
Zheng, Yan-Ping ;
Huang, Ke-Cheng ;
Fan, Chao-Ying ;
Sun, Hai-Zhu ;
Li, Xi-Fei ;
Wu, Xing-Long ;
Zhang, Jing-Ping .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (17) :7997-8005
[8]   Few-Layered Tin Sulfide Nanosheets Supported on Reduced Graphene Oxide as a High-Performance Anode for Potassium-Ion Batteries [J].
Fang, Lingzhe ;
Xu, Jing ;
Sun, Shuo ;
Lin, Baowei ;
Guo, Qiubo ;
Luo, Da ;
Xia, Hui .
SMALL, 2019, 15 (10)
[9]  
Frisch M. J., 2016, GAUSSIAN 16
[10]   CoS Quantum Dot Nanoclusters for High-Energy Potassium-Ion Batteries [J].
Gao, Hong ;
Zhou, Tengfei ;
Zheng, Yang ;
Zhang, Qing ;
Liu, Yuqing ;
Chen, Jun ;
Liu, Huakun ;
Guo, Zaiping .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (43)