Bent functions, partial difference sets, and quasi-Frobenius local rings

被引:22
作者
Hou, XD [1 ]
机构
[1] Wright State Univ, Dept Math & Stat, Dayton, OH 45435 USA
关键词
bent function; partial difference set; local ring; quasi-Frobenius ring;
D O I
10.1023/A:1008322008395
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Bent functions and partial difference sets have been constructed from finite principal ideal local rings. In this paper, the constructions are generalized to finite quasi-Frobenius local rings. Let R be a finite quasi-Frobenius local ring with maximal ideal M. Bent functions and certain partial difference sets on M x M are extended to R x R.
引用
收藏
页码:251 / 268
页数:18
相关论文
共 14 条
[1]   A characterization of binary bent functions [J].
Carlet, C ;
Guillot, P .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1996, 76 (02) :328-335
[2]  
Chen YQ, 1996, J COMB THEORY A, V76, P179
[3]  
Curtis C.W., 1988, REPRESENTATION THEOR
[4]  
Dillon J. F., 1974, THESIS U MARYLANDCOL
[5]  
DOBBERTIN H, 1995, LECT NOTES COMPUTER, V1008, P61
[6]  
Hou X.-D., 1998, Finite Fields and their Applications, V4, P55, DOI 10.1006/ffta.1997.0200
[7]   Results on bent functions [J].
Hou, XD ;
Langevin, P .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 80 (02) :232-246
[8]   GENERALIZED BENT FUNCTIONS AND THEIR PROPERTIES [J].
KUMAR, PV ;
SCHOLTZ, RA ;
WELCH, LR .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1985, 40 (01) :90-107
[9]  
Langevin P., 1993, CISM COURSES LECT, V339, P147
[10]   PARTIAL DIFFERENCE SETS WITH PALEY PARAMETERS [J].
LEUNG, KH ;
MA, SL .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1995, 27 :553-564