The acceleration effect on the vibration frequency of thickness-shear mode of an infinite isotropic plate

被引:4
作者
Wu, Rongxing [1 ,2 ,3 ]
Guo, Yan [1 ,4 ]
Xie, Longtao [1 ,2 ]
Pao, Shi-Yung [2 ,5 ]
Yong, Yook-Kong [6 ]
Wang, Ji [1 ,2 ]
机构
[1] Ningbo Univ, Sch Mech Engn & Mech, Piezoelect Device Lab, Ningbo 315211, Zhejiang, Peoples R China
[2] Ningbo Univ, Sch Mech Engn & Mech, TXC NBU Joint Ctr Res, Ningbo, Zhejiang, Peoples R China
[3] Ningbo Polytech, Dept Architectural Engn, Ningbo, Zhejiang, Peoples R China
[4] Ningbo Univ, Coll Sci & Technol, Dept Mech Engn, Ningbo, Zhejiang, Peoples R China
[5] TXC Cooperat, Res & Dev Div, Ningbo, Zhejiang, Peoples R China
[6] Rutgers State Univ, Dept Civil & Environm Engn, Piscataway, NJ USA
基金
中国国家自然科学基金;
关键词
Acceleration; frequency; nonlinear; plate; thickness-shear vibration; QUARTZ; SENSITIVITY; STRETCH;
D O I
10.1080/15376494.2020.1866126
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With large accelerations, the mechanical vibrations of device structures can be driven to nonlinear states yielding strong variations of vibration characteristics such as frequency change and modes shape distortions. The exact equation of motion with an external acceleration of the thickness-shear vibrations of an infinite isotropic plate is approximated through the coupling in frequencies and solved with harmonics matching, and the approximate solutions of frequency and displacements due to the acceleration are obtained. The analytical solution with good accuracy is obtained and the frequency variation is evaluated with the simple relationship between deformation, acceleration, and frequency.
引用
收藏
页码:2484 / 2488
页数:5
相关论文
共 50 条
  • [31] Review of Thickness-Shear Mode Quartz Resonator Sensors for Temperature and Pressure
    EerNisse, Errol P.
    Wiggins, Robert B.
    IEEE SENSORS JOURNAL, 2001, 1 (01) : 79 - 87
  • [32] Resonant Frequency Function of Thickness-Shear Vibrations of Rectangular Crystal Plates
    Wang, Ji
    Yang, Lijun
    Pan, Qiaoqiao
    Chao, Min-Chiang
    Du, Jianke
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2011, 58 (05) : 1102 - 1107
  • [33] Magnetoelectric Sensor Operating in d15 Thickness-Shear Mode for High-Frequency Current Detection
    Li, Fuchao
    Wu, Jingen
    Liu, Sujie
    Gao, Jieqiang
    Lin, Bomin
    Mo, Jintao
    Qiao, Jiacheng
    Xu, Yiwei
    Du, Yongjun
    He, Xin
    Zhou, Yifei
    Zeng, Lan
    Hu, Zhongqiang
    Liu, Ming
    SENSORS, 2024, 24 (08)
  • [34] Effects of Unequal Electrode Thickness, Location, and Size on Thickness-Shear Mode Quartz Piezoelectric Resonators
    Zhang, Yan
    Han, Tao
    FERROELECTRICS, 2015, 486 (01) : 134 - 142
  • [35] Frequency–Temperature Analysis of Thickness-Shear Vibrations of SC-Cut Quartz Crystal Plates with the First-Order Mindlin Plate Equations
    Rongxing Wu
    Wenjun Wang
    Guijia Chen
    Jianke Du
    Tingfeng Ma
    Ji Wang
    Acta Mechanica Solida Sinica, 2021, 34 : 516 - 526
  • [36] Frequency-Temperature Analysis of Thickness-Shear Vibrations of SC-Cut Quartz Crystal Plates with the First-Order Mindlin Plate Equations
    Wu, Rongxing
    Wang, Wenjun
    Chen, Guijia
    Du, Jianke
    Ma, Tingfeng
    Wang, Ji
    ACTA MECHANICA SOLIDA SINICA, 2021, 34 (04) : 516 - 526
  • [37] Mass loading induced frequency shift of a thickness-shear vibrating quartz crystal plate considering size effect based on the modified couple stress theory
    Xie, Xuan
    Xie, Jiemin
    Jiang, Shan
    Lei, Jian
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2022, 29 (16) : 2278 - 2283
  • [38] Thickness-shear vibration analysis of rectangular quartz plates by a numerical extended Kantorovich method
    Liu, B.
    Xing, Y. F.
    Eisenberger, M.
    Ferreira, A. J. M.
    COMPOSITE STRUCTURES, 2014, 107 : 429 - 435
  • [39] The Analysis of the Third-order Thickness-shear Overtone Vibrations of Quartz Crystal Plates with Mindlin Plate Theory
    Wang, Ji
    Wu, Rongxing
    Du, Jianke
    Wang, Huiming
    2008 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-4 AND APPENDIX, 2008, : 2173 - +
  • [40] Thickness-shear Vibration Analysis of Rectangular Quartz Plates by a Differential Quadrature Finite Element Method
    Liu, Bo
    Xing, Yufeng
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 41 - 44