Construction of anisotropic polyconvex energies and applications to thin shells

被引:6
|
作者
Ebbing, V. [1 ]
Balzani, D. [1 ]
Schroeder, J. [1 ]
Neff, P. [2 ]
Gruttmann, F. [3 ]
机构
[1] Univ Duisburg Essen, Inst Mech, Abt Bauwissensch, Fak Ingenieurwissensch, D-45117 Essen, Germany
[2] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
[3] Tech Univ Darmstadt, Inst Werkstoffe & Mech Bauwesen, D-64287 Darmstadt, Germany
关键词
Polyconvexity; Hyperelasticity; Anisotropy; Thin shells; COSSERAT COUPLE MODULUS; EXISTENCE; MINIMIZERS; MODEL;
D O I
10.1016/j.commatsci.2009.02.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In computer simulations where constitutive equations are considered anisotropic polyconvex energies can preferably be used because the existence of minimizers is then automatically guaranteed. In this work we investigate the capability to simulate anisotropy effects of anisotropic thin shells using polyconvex anisotropic energies. The construction of the considered polyconvex transversely isotropic energy is based on specific structural tensors. The iterative enforcement of the zero normal stress condition at the integration points allows the consideration of arbitrary three-dimensional constitutive equations. As a representative example we compare results for isotropic and anisotropic plates. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:639 / 641
页数:3
相关论文
共 50 条