Construction of anisotropic polyconvex energies and applications to thin shells

被引:6
|
作者
Ebbing, V. [1 ]
Balzani, D. [1 ]
Schroeder, J. [1 ]
Neff, P. [2 ]
Gruttmann, F. [3 ]
机构
[1] Univ Duisburg Essen, Inst Mech, Abt Bauwissensch, Fak Ingenieurwissensch, D-45117 Essen, Germany
[2] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
[3] Tech Univ Darmstadt, Inst Werkstoffe & Mech Bauwesen, D-64287 Darmstadt, Germany
关键词
Polyconvexity; Hyperelasticity; Anisotropy; Thin shells; COSSERAT COUPLE MODULUS; EXISTENCE; MINIMIZERS; MODEL;
D O I
10.1016/j.commatsci.2009.02.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In computer simulations where constitutive equations are considered anisotropic polyconvex energies can preferably be used because the existence of minimizers is then automatically guaranteed. In this work we investigate the capability to simulate anisotropy effects of anisotropic thin shells using polyconvex anisotropic energies. The construction of the considered polyconvex transversely isotropic energy is based on specific structural tensors. The iterative enforcement of the zero normal stress condition at the integration points allows the consideration of arbitrary three-dimensional constitutive equations. As a representative example we compare results for isotropic and anisotropic plates. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:639 / 641
页数:3
相关论文
共 50 条
  • [1] Applications of anisotropic polyconvex energies: thin shells and biomechanics of arterial walls
    Balzani, Daniel
    Schroeder, Joerg
    Neff, Patrizio
    POLY-, QUASI- AND RANK-ONE CONVEXITY IN APPLIED MECHANICS, 2010, 516 : 131 - 175
  • [2] Anisotropic polyconvex energies
    Schroeder, Joerg
    POLY-, QUASI- AND RANK-ONE CONVEXITY IN APPLIED MECHANICS, 2010, 516 : 53 - 105
  • [3] Analysis of thin shells using anisotropic polyconvex energy densities
    Balzani, Daniel
    Gruttmann, Friedrich
    Schroeder, Joerg
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (9-12) : 1015 - 1032
  • [4] Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors
    Schroeder, J.
    Neff, P.
    Ebbing, V.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2008, 56 (12) : 3486 - 3506
  • [5] Approximation of anisotropic elasticity tensors at the reference state with polyconvex energies
    Ebbing, V.
    Schroeder, J.
    Neff, P.
    ARCHIVE OF APPLIED MECHANICS, 2009, 79 (6-7) : 651 - 657
  • [6] Approximation of anisotropic elasticity tensors at the reference state with polyconvex energies
    V. Ebbing
    J. Schröder
    P. Neff
    Archive of Applied Mechanics, 2009, 79 : 651 - 657
  • [7] Construction of polyconvex energies for non-trivial anisotropy classes
    Ebbing, Vera
    Schroeder, Joerg
    Neff, Patrizio
    POLY-, QUASI- AND RANK-ONE CONVEXITY IN APPLIED MECHANICS, 2010, 516 : 107 - 130
  • [8] Polyconvex energies and cavitation
    Pietro Celada
    Stefania Perrotta
    Nonlinear Differential Equations and Applications NoDEA, 2013, 20 : 295 - 321
  • [9] Polyconvex energies and cavitation
    Celada, Pietro
    Perrotta, Stefania
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (02): : 295 - 321
  • [10] Buckling of thin anisotropic shells
    Haseganu, EM
    Smirnov, AL
    Tovstik, PE
    TRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING, 2000, 24 (1B) : 169 - 178