Effect of Ferroelectric Thickness Variation in Undoped HfO2-Based Negative-Capacitance Field-Effect Transistor

被引:23
作者
Awadhiya, Bhaskar [1 ]
Kondekar, Pravin N. [1 ]
Meshram, Ashvinee Deo [1 ]
机构
[1] Indian Inst Informat Technol Design & Mfg, Elect & Commun Engn Dept, Nanoelect & VLSI Lab, Jabalpur 482005, India
关键词
Negative-capacitance field-effect transistor (NCFET); negative differential resistance (NDR); ferroelectric-dielectric (FE-DE); subthreshold swing (SS); VOLTAGE AMPLIFICATION; MOSFET; BEHAVIOR; IMPACT; FET;
D O I
10.1007/s11664-019-07483-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Negative-capacitance field-effect transistors (NCFETs) are emerging devices which have shown huge potential to replace classical field-effect transistors because of their steep switching characteristic enabled by a ferroelectric stack. The negative capacitance in ferroelectrics results in a voltage step-up action which curtails the subthreshold swing below 60 mV/dec. The ferroelectric thickness is a key design parameter which governs the operation of such devices and resulting circuits. We examine herein for the first time the effect of the ferroelectric thickness of undoped HfO2-based negative-capacitance field-effect transistors on the device and circuit performance. Increasing the ferroelectric thickness yields higher gain but with increased probability of hysteresis. Also, depending upon the properties of the underlying transistor, at low overdrive voltage, increase in the ferroelectric thickness beyond a certain value may introduce a loss of saturation (negative differential resistance) in the drain characteristic of the NCFET. Also, we design an NCFET-based resistive load inverter and study the effect of thickness variation on the circuit performance. The results of the analysis show that increasing the thickness within a permissible limit increases the noise margin and reduces the power dissipation of the designed circuit.
引用
收藏
页码:6762 / 6770
页数:9
相关论文
共 39 条
[1]  
Abelé N, 2005, INT EL DEVICES MEET, P1075
[2]   Experimental Observation of Negative Capacitance in Ferroelectrics at Room Temperature [J].
Appleby, Daniel J. R. ;
Ponon, Nikhil K. ;
Kwa, Kelvin S. K. ;
Zou, Bin ;
Petrov, Peter K. ;
Wang, Tianle ;
Alford, Neil M. ;
O'Neill, Anthony .
NANO LETTERS, 2014, 14 (07) :3864-3868
[3]   Analogous behavior of FE-DE heterostructure at room temperature and ferroelectric capacitor at Curie temperature [J].
Awadhiya, Bhaskar ;
Kondekar, Pravin N. ;
Meshram, Ashvinee Deo .
SUPERLATTICES AND MICROSTRUCTURES, 2018, 123 :306-310
[4]   Passive voltage amplification in non-leaky ferroelectric-dielectric heterostructure [J].
Awadhiya, Bhaskar ;
Kondekar, Pravin N. ;
Meshram, Ashvinee Deo .
MICRO & NANO LETTERS, 2018, 13 (10) :1399-1403
[5]  
Aziz A, 2016, IEEE ELECTR DEVICE L, V37, P6
[6]   Double-gate tunnel FET with high-κ gate dielectric [J].
Boucart, Kathy ;
Mihai Ionescu, Adrian .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (07) :1725-1733
[7]   FERROELECTRICS Negative capacitance detected [J].
Catalan, Gustau ;
Jimenez, David ;
Gruverman, Alexei .
NATURE MATERIALS, 2015, 14 (02) :137-139
[8]  
Chen Fred, 2008, 2008 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), P750, DOI 10.1109/ICCAD.2008.4681660
[9]   Nonvolatile Memory Design Based on Ferroelectric FETs [J].
George, Sumitha ;
Ma, Kaisheng ;
Aziz, Ahmedullah ;
Li, Xueqing ;
Khan, Asif ;
Salahuddin, Sayeef ;
Chang, Meng-Fan ;
Datta, Suman ;
Sampson, John ;
Gupta, Sumeet ;
Narayanan, Vijaykrishnan .
2016 ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2016,
[10]  
Gopalakrishnan K, 2002, INTERNATIONAL ELECTRON DEVICES 2002 MEETING, TECHNICAL DIGEST, P289, DOI 10.1109/IEDM.2002.1175835