A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics

被引:97
作者
Waagan, K. [1 ]
机构
[1] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA
基金
美国国家科学基金会;
关键词
Magnetohydrodynamics; Finite volume methods; Positive conservative schemes; APPROXIMATE RIEMANN SOLVER; CONSERVATION-LAWS; EULER EQUATIONS; GODUNOV; HYDRODYNAMICS; SIMULATIONS; CODES;
D O I
10.1016/j.jcp.2009.08.020
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a highly robust second order accurate scheme for the Euler equations and the ideal MHD equations. The scheme is of predictor-corrector type, with a MUSCL scheme following as a special case. The crucial ingredients are an entropy stable approximate Riemann solver and a new spatial reconstruction that ensures positivity of mass density and pressure. For multidimensional MHD, a new discrete form of the Powell source terms is vital to ensure the stability properties. The numerical examples show that the scheme has superior stability compared to standard schemes, while maintaining accuracy. in particular, the method can handle very low values of pressure (i.e. low plasma beta or high Mach numbers) and low mass densities. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:8609 / 8626
页数:18
相关论文
共 28 条
[1]   A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows [J].
Audusse, E ;
Bouchut, F ;
Bristeau, MO ;
Klein, R ;
Perthame, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) :2050-2065
[2]   A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations [J].
Balsara, DS ;
Spicer, DS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 149 (02) :270-292
[3]  
Berthon C, 2005, COMMUN MATH SCI, V3, P133
[4]   Why the MUSCL-Hancock scheme is L1-stable [J].
Berthon, Christophe .
NUMERISCHE MATHEMATIK, 2006, 104 (01) :27-46
[5]   A MUSCL method satisfying all the numerical entropy inequalities [J].
Bouchut, F ;
Bourdarias, C ;
Perthame, B .
MATHEMATICS OF COMPUTATION, 1996, 65 (216) :1439-1461
[6]   Entropy satisfying flux vector splittings and kinetic BGK models [J].
Bouchut, F .
NUMERISCHE MATHEMATIK, 2003, 94 (04) :623-672
[7]  
BOUCHUT F, 2004, FRONTIERS MATH, V8, P135
[8]  
BOUCHUT F, MULTIWAVE APPR UNPUB, V2
[9]  
Bouchut F, 2007, NUMER MATH, V108, P7, DOI [10.1007/s00211-007-0108-8, 10.1007/S00211-007-0108-8]
[10]   THE EFFECT OF NONZERO-DEL.B ON THE NUMERICAL-SOLUTION OF THE MAGNETO-HYDRODYNAMIC EQUATIONS [J].
BRACKBILL, JU ;
BARNES, DC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 35 (03) :426-430