MRI-Derived Radiomics to Guide Post-operative Management for High-Risk Prostate Cancer

被引:52
作者
Bourbonne, Vincent [1 ,2 ,3 ]
Vallieres, Martin [2 ,4 ]
Lucia, Francois [1 ,2 ,3 ]
Doucet, Laurent [5 ]
Visvikis, Dimitris [2 ]
Tissot, Valentin [6 ]
Pradier, Olivier [1 ,2 ,3 ]
Hatt, Mathieu [2 ]
Schick, Ulrike [1 ,2 ,3 ]
机构
[1] Univ Hosp, Dept Radiat Oncol, Brest, France
[2] Brest Univ, LaTIM, INSERM, UMR 1101, Brest, France
[3] Univ Bretagne Occidentale, Brest, France
[4] McGill Univ, Med Phys Unit, Montreal, PQ, Canada
[5] Univ Hosp, Dept Anatomopathol, Brest, France
[6] Univ Hosp, Dept Radiol, Brest, France
关键词
magnetic resonance imaging; prostatic neoplasms; radiomics; machine learning; treatment failure; SALVAGE RADIATION-THERAPY; RADICAL PROSTATECTOMY; BIOCHEMICAL RECURRENCE; RADIOTHERAPY; PREDICTION; SURVIVAL; FEATURES; OUTCOMES;
D O I
10.3389/fonc.2019.00807
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: Prostatectomy is one of the main therapeutic options for prostate cancer (PCa). Studies proved the benefit of adjuvant radiotherapy (aRT) on clinical outcomes, with more toxicities when compared to salvage radiotherapy. A better assessment of the likelihood of biochemical recurrence (BCR) would rationalize performing aRT. Our goal was to assess the prognostic value of MRI-derived radiomics on BCR for PCa with high recurrence risk. Methods: We retrospectively selected patients with a high recurrence risk (T3a/b or T4 and/or R1 and/or Gleason score>7) and excluded patients with a post-operative PSA > 0.04 ng/mL or a lymph-node involvement. We extracted IBSI-compliant radiomic features (shape and first order intensity metrics, as well as second and third order textural features) from tumors delineated in T2 and ADC sequences. After random division (training and testing sets) and machine learning based feature reduction, a univariate and multivariate Cox regression analysis was performed to identify independent factors. The correlation with BCR was assessed using AUC and prediction of biochemical relapse free survival (bRFS) with a Kaplan-Meier analysis. Results: One hundred seven patients were included. With a median follow-up of 52.0 months, 17 experienced BCR. In the training set, no clinical feature was correlated with BCR. One feature from ADC (SZE(GLSZM)) outperformed with an AUC of 0.79 and a HR 17.9 (p = 0.0001). Lower values of SZE(GLSZM) are associated with more heterogeneous tumors. In the testing set, this feature remained predictive of BCR and bRFS (AUC 0.76, p = 0.0236). Conclusion: One radiomic feature was predictive of BCR and bRFS after prostatectomy helping to guide post-operative management.
引用
收藏
页数:9
相关论文
共 31 条
[1]   Detection of Dominant Intraprostatic Lesions in Patients With Prostate Cancer Using an Artificial Neural Network and MR Multimodal Radiomics Analysis [J].
Bagher-Ebadian, H. ;
Janic, B. ;
Liu, C. ;
Pantelic, M. ;
Hearshen, D. ;
Elshaikh, M. A. ;
Movsas, B. ;
Chetty, I. J. ;
Wen, N. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2017, 99 (02) :S82-S83
[2]   The Role of Prostate-specific Antigen Persistence After Radical Prostatectomy for the Prediction of Clinical Progression and Cancer-specific Mortality in Node-positive Prostate Cancer Patients [J].
Bianchi, Lorenzo ;
Nini, Alessandro ;
Bianchi, Marco ;
Gandaglia, Giorgio ;
Fossati, Nicola ;
Suardi, Nazareno ;
Moschini, Marco ;
Dell'Oglio, Paolo ;
Schiavina, Riccardo ;
Montorsi, Francesco ;
Briganti, Alberto .
EUROPEAN UROLOGY, 2016, 69 (06) :1142-1148
[3]   Postoperative radiotherapy after radical prostatectomy:: a randomised controlled trial (EORTC trial 22911) [J].
Bolla, M ;
van Poppel, H ;
Collette, L ;
van Cangh, P ;
Vekemans, K ;
Da Pozzo, L ;
de Reijke, TM ;
Verbaeys, A ;
Bosset, JF ;
van Velthoven, R ;
Maréchal, JM ;
Scalliet, P ;
Haustermans, K ;
Piérart, M .
LANCET, 2005, 366 (9485) :572-578
[4]   Postoperative radiotherapy after radical prostatectomy for high-risk prostate cancer: long-term results of a randomised controlled trial (EORTC trial 22911) [J].
Bolla, Michel ;
van Poppel, Hein ;
Tombal, Bertrand ;
Vekemans, Kris ;
Da Pozzo, Luigi ;
de Reijke, Theo M. ;
Verbaeys, Antony ;
Bosset, Jean-Francois ;
van Velthoven, Roland ;
Colombel, Marc ;
van de Beek, Cees ;
Verhagen, Paul ;
van den Bergh, Alphonsus ;
Sternberg, Cora ;
Gasser, Thomas ;
van Tienhoven, Geertjan ;
Scalliet, Pierre ;
Haustermans, Karin ;
Collette, Laurence .
LANCET, 2012, 380 (9858) :2018-2027
[5]   Prostate-specific membrane antigen positron emission tomography in prostate cancer: a step toward personalized medicine [J].
Bouchelouche, Kirsten ;
Choyke, Peter L. .
CURRENT OPINION IN ONCOLOGY, 2016, 28 (03) :216-221
[6]   Early Salvage Radiation Therapy Does Not Compromise Cancer Control in Patients with pT3N0 Prostate Cancer After Radical Prostatectomy: Results of a Match-controlled Multi-institutional Analysis [J].
Briganti, Alberto ;
Wiegel, Thomas ;
Joniau, Steven ;
Cozzarini, Cesare ;
Bianchi, Marco ;
Sun, Maxine ;
Tombal, Bertrand ;
Haustermans, Karin ;
Budiharto, Tom ;
Hinkelbein, Wolfgang ;
Di Muzio, Nadia ;
Karakiewicz, Pierre I. ;
Montorsi, Francesco ;
Van Poppel, Hein .
EUROPEAN UROLOGY, 2012, 62 (03) :472-487
[7]   MAPS: A Quantitative Radiomics Approach for Prostate Cancer Detection [J].
Cameron, Andrew ;
Khalvati, Farzad ;
Haider, Masoom A. ;
Wong, Alexander .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (06) :1145-1156
[8]   Creating Robust Predictive Radiomic Models for Data From Independent Institutions Using Normalization [J].
Chatterjee, Avishek ;
Vallieres, Martin ;
Dohan, Anthony ;
Levesque, Ives R. ;
Ueno, Yoshiko ;
Saif, Sameh ;
Reinhold, Caroline ;
Seuntjens, Jan .
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2019, 3 (02) :210-215
[9]   The CAPRA-S Score A Straightforward Tool for Improved Prediction of Outcomes After Radical Prostatectomy [J].
Cooperberg, Matthew R. ;
Hilton, Joan F. ;
Carroll, Peter R. .
CANCER, 2011, 117 (22) :5039-5046
[10]  
Dalela Deepansh, 2016, Rev Urol, V18, P1