MRI-Derived Radiomics to Guide Post-operative Management for High-Risk Prostate Cancer

被引:45
作者
Bourbonne, Vincent [1 ,2 ,3 ]
Vallieres, Martin [2 ,4 ]
Lucia, Francois [1 ,2 ,3 ]
Doucet, Laurent [5 ]
Visvikis, Dimitris [2 ]
Tissot, Valentin [6 ]
Pradier, Olivier [1 ,2 ,3 ]
Hatt, Mathieu [2 ]
Schick, Ulrike [1 ,2 ,3 ]
机构
[1] Univ Hosp, Dept Radiat Oncol, Brest, France
[2] Brest Univ, LaTIM, INSERM, UMR 1101, Brest, France
[3] Univ Bretagne Occidentale, Brest, France
[4] McGill Univ, Med Phys Unit, Montreal, PQ, Canada
[5] Univ Hosp, Dept Anatomopathol, Brest, France
[6] Univ Hosp, Dept Radiol, Brest, France
来源
FRONTIERS IN ONCOLOGY | 2019年 / 9卷
关键词
magnetic resonance imaging; prostatic neoplasms; radiomics; machine learning; treatment failure; SALVAGE RADIATION-THERAPY; RADICAL PROSTATECTOMY; BIOCHEMICAL RECURRENCE; RADIOTHERAPY; PREDICTION; SURVIVAL; FEATURES; OUTCOMES;
D O I
10.3389/fonc.2019.00807
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: Prostatectomy is one of the main therapeutic options for prostate cancer (PCa). Studies proved the benefit of adjuvant radiotherapy (aRT) on clinical outcomes, with more toxicities when compared to salvage radiotherapy. A better assessment of the likelihood of biochemical recurrence (BCR) would rationalize performing aRT. Our goal was to assess the prognostic value of MRI-derived radiomics on BCR for PCa with high recurrence risk. Methods: We retrospectively selected patients with a high recurrence risk (T3a/b or T4 and/or R1 and/or Gleason score>7) and excluded patients with a post-operative PSA > 0.04 ng/mL or a lymph-node involvement. We extracted IBSI-compliant radiomic features (shape and first order intensity metrics, as well as second and third order textural features) from tumors delineated in T2 and ADC sequences. After random division (training and testing sets) and machine learning based feature reduction, a univariate and multivariate Cox regression analysis was performed to identify independent factors. The correlation with BCR was assessed using AUC and prediction of biochemical relapse free survival (bRFS) with a Kaplan-Meier analysis. Results: One hundred seven patients were included. With a median follow-up of 52.0 months, 17 experienced BCR. In the training set, no clinical feature was correlated with BCR. One feature from ADC (SZE(GLSZM)) outperformed with an AUC of 0.79 and a HR 17.9 (p = 0.0001). Lower values of SZE(GLSZM) are associated with more heterogeneous tumors. In the testing set, this feature remained predictive of BCR and bRFS (AUC 0.76, p = 0.0236). Conclusion: One radiomic feature was predictive of BCR and bRFS after prostatectomy helping to guide post-operative management.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] External Validation of an MRI-Derived Radiomics Model to Predict Biochemical Recurrence after Surgery for High-Risk Prostate Cancer
    Bourbonne, Vincent
    Fournier, Georges
    Vallieres, Martin
    Lucia, Francois
    Doucet, Laurent
    Tissot, Valentin
    Cuvelier, Gilles
    Hue, Stephane
    Du, Henri Le Penn
    Perdriel, Luc
    Bertrand, Nicolas
    Staroz, Frederic
    Visvikis, Dimitris
    Pradier, Olivier
    Hatt, Mathieu
    Schick, Ulrike
    CANCERS, 2020, 12 (04)
  • [2] News on prostate cancer: metastases, MRI and high-risk stage post-operative management
    Ploussard, G.
    Boissier, R.
    Bessede, T.
    PROGRES EN UROLOGIE, 2012, 22 : 15 - 20
  • [3] MRI-derived radiomics to guide post-operative management of glioblastoma: Implication for personalized radiation treatment volume delineation
    Chiesa, S.
    Russo, R.
    Bartoli, F. Beghella
    Palumbo, I.
    Sabatino, G.
    Cannata, M. C.
    Gigli, R.
    Longo, S.
    Tran, H. E.
    Boldrini, L.
    Dinapoli, N.
    Votta, C.
    Cusumano, D.
    Pignotti, F.
    Lupattelli, M.
    Camilli, F.
    Della Pepa, G. M.
    D'Alessandris, G. Q.
    Olivi, A.
    Balducci, M.
    Colosimo, C.
    Gambacorta, M. A.
    Valentini, V.
    Aristei, C.
    Gaudino, S.
    FRONTIERS IN MEDICINE, 2023, 10
  • [4] MRI-derived radiomics models for diagnosis, aggressiveness, and prognosis evaluation in prostate cancer
    Zhu, Xuehua
    Shao, Lizhi
    Liu, Zhenyu
    Liu, Zenan
    He, Jide
    Liu, Jiangang
    Ping, Hao
    Lu, Jian
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2023, 24 (08): : 663 - 681
  • [5] MRI-Derived Radiomics Model to Predict the Biochemical Recurrence of Prostate Cancer Following Seed Brachytherapy
    Zhu, Xuehua
    Liu, Zenan
    He, Jide
    Li, Ziang
    Huang, Yi
    Lu, Jian
    ARCHIVOS ESPANOLES DE UROLOGIA, 2023, 76 (04): : 264 - 269
  • [6] Management of high-risk and post-operative non-metastatic prostate cancer in Catalonia: an expert Delphi consensus
    Bonet, Marta
    Gonzalez, David
    Baquedano, Jose-Enrique
    Garcia, Elena
    Altabas, Manuel
    Casas, Francesc
    Feltes, Nicolas
    Ferrer, Ferran
    Foro, Palmira
    Fuentes, Rafael
    Galdeano, Manuel
    Gomez, David
    Henriquez, Ivan
    Jove, Josep
    Lozano, Joan
    Maldonado, Xavier
    Mases, Joel
    Membrive, Ismael
    Paredes, Saturio
    Rosello, Alvar
    Sancho, Gemma
    Mira, Moises
    CLINICAL & TRANSLATIONAL ONCOLOGY, 2023, 25 (04) : 1017 - 1023
  • [7] Post-Operative Radiotherapy in Prostate Cancer: Is It Time for a Belt and Braces Approach?
    Giraud, Nicolas
    Benziane-Ouaritini, Nicolas
    Schick, Ulrike
    Beauval, Jean-Baptiste
    Chaddad, Ahmad
    Niazi, Tamim
    Faye, Mame Daro
    Supiot, Stephane
    Sargos, Paul
    Latorzeff, Igor
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [8] Surgery for high-risk prostate cancer and metastatic prostate cancer
    Safir, Ilan J.
    Lian, Fei
    Alemozaffar, Mehrdad
    Master, Viraj A.
    CURRENT PROBLEMS IN CANCER, 2015, 39 (01) : 33 - 40
  • [9] Prediction of prostate tumour hypoxia using pre-treatment MRI-derived radiomics: preliminary findings
    Zhong, Jim
    Frood, Russell
    McWilliam, Alan
    Davey, Angela
    Shortall, Jane
    Swinton, Martin
    Hulson, Oliver
    West, Catharine M.
    Buckley, David
    Brown, Sarah
    Choudhury, Ananya
    Hoskin, Peter
    Henry, Ann
    Scarsbrook, Andrew
    RADIOLOGIA MEDICA, 2023, 128 (06): : 765 - 774
  • [10] News and perspective in management of high-risk prostate cancer
    Audenet, F.
    Roupret, M.
    PROGRES EN UROLOGIE, 2011, 21 : S80 - S83