Caputo derivatives of fractional variable order: Numerical approximations

被引:145
|
作者
Tavares, Dina [1 ,2 ]
Almeida, Ricardo [2 ]
Torres, Delfim F. M. [2 ]
机构
[1] Polytechn Inst Leiria, ESECS, P-2411901 Leiria, Portugal
[2] Univ Aveiro, Ctr Res & Dev Math & Applicat CIDMA, Dept Math, P-3810193 Aveiro, Portugal
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2016年 / 35卷
关键词
Fractional calculus; Fractional variable order; Fractional differential equations; Approximation methods; ANOMALOUS DIFFUSION; OPERATORS; EQUATION;
D O I
10.1016/j.cnsns.2015.10.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new numerical tool to solve partial differential equations involving Caputo derivatives of fractional variable order. Three Caputo-type fractional operators are considered, and for each one of them an approximation formula is obtained in terms of standard (integer-order) derivatives only. Estimations for the error of the approximations are also provided. We then compare the numerical approximation of some test function with its exact fractional derivative. We end with an exemplification of how the presented methods can be used to solve partial fractional differential equations of variable order. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:69 / 87
页数:19
相关论文
共 50 条
  • [41] On the Caputo-Hadamard fractional IVP with variable order using the upper-lower solutions technique
    Bouazza, Zoubida
    Souhila, Sabit
    Etemad, Sina
    Souid, Mohammed Said
    Akguel, Ali
    Rezapour, Shahram
    De la Sen, Manuel
    AIMS MATHEMATICS, 2023, 8 (03): : 5484 - 5501
  • [42] A review of numerical solutions of variable-order fractional differential equations
    Sun B.
    Zhang W.-C.
    Li Z.-L.
    Fan K.
    Kongzhi yu Juece/Control and Decision, 2022, 37 (10): : 2433 - 2442
  • [43] Fractional order differential systems involving right Caputo and left Riemann-Liouville fractional derivatives with nonlocal coupled conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Alsaedi, Ahmed
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [44] Numerical approximations of Atangana-Baleanu Caputo derivative and its application
    Yadav, Swati
    Pandey, Rajesh K.
    Shukla, Anil K.
    CHAOS SOLITONS & FRACTALS, 2019, 118 : 58 - 64
  • [45] Numerical analysis of a new space-time variable fractional order advection-dispersion equation
    Zhang, H.
    Liu, F.
    Zhuang, P.
    Turner, I.
    Anh, V.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 : 541 - 550
  • [46] Properties of Vector-Valued t-Discrete Fractional Calculus and its Connection with Caputo Fractional Derivatives
    Chang, Yong-Kui
    Ponce, Rodrigo
    CONSTRUCTIVE APPROXIMATION, 2023, 57 (03) : 1133 - 1144
  • [47] Numerical Solution for the Variable Order Time Fractional Diffusion Equation with Bernstein Polynomials
    Chen, Yiming
    Liu, Liqing
    Li, Xuan
    Sun, Yannan
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 97 (01): : 81 - 100
  • [48] The Numerical Simulation of Space-Time Variable Fractional Order Diffusion Equations
    Zhang, Hongmei
    Shen, Shujun
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2013, 6 (04) : 571 - 585
  • [49] Variable-order fractional numerical differentiation for noisy signals by wavelet denoising
    Chen, Yi-Ming
    Wei, Yan-Qiao
    Liu, Da-Yan
    Boutat, Driss
    Chen, Xiu-Kai
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 311 : 338 - 347
  • [50] A numerical technique for variable-order fractional functional nonlinear dynamic systems
    Khane Keshi F.
    Moghaddam B.P.
    Aghili A.
    International Journal of Dynamics and Control, 2019, 7 (04) : 1350 - 1357