Caputo derivatives of fractional variable order: Numerical approximations

被引:145
|
作者
Tavares, Dina [1 ,2 ]
Almeida, Ricardo [2 ]
Torres, Delfim F. M. [2 ]
机构
[1] Polytechn Inst Leiria, ESECS, P-2411901 Leiria, Portugal
[2] Univ Aveiro, Ctr Res & Dev Math & Applicat CIDMA, Dept Math, P-3810193 Aveiro, Portugal
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2016年 / 35卷
关键词
Fractional calculus; Fractional variable order; Fractional differential equations; Approximation methods; ANOMALOUS DIFFUSION; OPERATORS; EQUATION;
D O I
10.1016/j.cnsns.2015.10.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new numerical tool to solve partial differential equations involving Caputo derivatives of fractional variable order. Three Caputo-type fractional operators are considered, and for each one of them an approximation formula is obtained in terms of standard (integer-order) derivatives only. Estimations for the error of the approximations are also provided. We then compare the numerical approximation of some test function with its exact fractional derivative. We end with an exemplification of how the presented methods can be used to solve partial fractional differential equations of variable order. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:69 / 87
页数:19
相关论文
共 50 条
  • [1] Variable-order fractional derivatives and their numerical approximations
    Valerio, Duarte
    da Costa, Jose Sa
    SIGNAL PROCESSING, 2011, 91 (03) : 470 - 483
  • [2] Caputo-Hadamard Fractional Derivatives of Variable Order
    Almeida, Ricardo
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (01) : 1 - 19
  • [3] Numerical approximations of fractional derivatives with applications
    Pooseh, Shakoor
    Almeida, Ricardo
    Torres, Delfim F. M.
    ASIAN JOURNAL OF CONTROL, 2013, 15 (03) : 698 - 712
  • [4] Second-order approximations for variable order fractional derivatives: Algorithms and applications
    Zhao, Xuan
    Sun, Zhi-zhong
    Karniadakis, George Em
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 : 184 - 200
  • [5] Local discontinuous Galerkin approximations to variable-order time-fractional diffusion model based on the Caputo-Fabrizio fractional derivative
    Wei, Leilei
    Li, Wenbo
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 188 : 280 - 290
  • [6] Approximation and application of the Riesz-Caputo fractional derivative of variable order with fixed memory
    Blaszczyk, Tomasz
    Bekus, Krzysztof
    Szajek, Krzysztof
    Sumelka, Wojciech
    MECCANICA, 2022, 57 (04) : 861 - 870
  • [7] Numerical algorithms for Caputo fractional-order differential equations
    Xue, Dingyu
    Bai, Lu
    INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (06) : 1201 - 1211
  • [8] HIGHER ORDER GRUNWALD APPROXIMATIONS OF FRACTIONAL DERIVATIVES AND FRACTIONAL POWERS OF OPERATORS
    Baeumer, Boris
    Kovacs, Mihaly
    Sankaranarayanan, Harish
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (02) : 813 - 834
  • [9] Numerical Simulation of the Fractional-Order Lorenz Chaotic Systems with Caputo Fractional Derivative
    Dai, Dandan
    Li, Xiaoyu
    Li, Zhiyuan
    Zhang, Wei
    Wang, Yulan
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 135 (02): : 1371 - 1392
  • [10] Stability of Systems of Fractional-Order Differential Equations with Caputo Derivatives
    Brandibur, Oana
    Garrappa, Roberto
    Kaslik, Eva
    MATHEMATICS, 2021, 9 (08)