Equivalence of viscosity and weak solutions for a p-parabolic equation

被引:7
|
作者
Siltakoski, Jarkko [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
关键词
Comparison principle; Gradient term; Parabolic p-Laplacian; Viscosity solution; Weak solution; SUPERSOLUTIONS; REGULARITY; BOUNDARY; MAXIMUM;
D O I
10.1007/s00028-020-00666-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the relationship of viscosity and weak solutions to the equation partial derivative(t)u - Delta(p)u = f (Du), where p > 1 and f is an element of C(R-N) satisfies suitable assumptions. Our main result is that bounded viscosity supersolutions coincide with bounded lower semicontinuous weak supersolutions. Moreover, we prove the lower semicontinuity of weak supersolutions when p >= 2.
引用
收藏
页码:2047 / 2080
页数:34
相关论文
共 50 条
  • [21] The Petrovskii criterion and barriers for degenerate and singular p-parabolic equations
    Bjorn, Anders
    Bjorn, Jana
    Gianazza, Ugo
    MATHEMATISCHE ANNALEN, 2017, 368 (3-4) : 885 - 904
  • [22] THE EQUIVALENCE OF WEAK AND VERY WEAK SUPERSOLUTIONS TO THE POROUS MEDIUM EQUATION
    Lehtela, Pekka
    Lukkari, Teemu
    TOHOKU MATHEMATICAL JOURNAL, 2018, 70 (03) : 425 - 445
  • [23] A BOUNDARY HARNACK INEQUALITY FOR SINGULAR EQUATIONS OF p-PARABOLIC TYPE
    Kuusi, Tuomo
    Mingione, Giuseppe
    Nystrom, Kaj
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (08) : 2705 - 2719
  • [24] Weak solutions for p-Laplacian equation
    Bhuvaneswari, Venkatasubramaniam
    Lingeshwaran, Shangerganesh
    Balachandran, Krishnan
    ADVANCES IN NONLINEAR ANALYSIS, 2012, 1 (04) : 319 - 334
  • [25] Existence and uniqueness of weak solutions for a non-uniformly parabolic equation
    Cai, Yongyong
    Zhou, Shulin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (10) : 3021 - 3042
  • [26] Existence of Weak Solutions to an Elliptic-Parabolic Equation with Variable Order of Nonlinearity
    Mukminov F.K.
    Andriyanova E.R.
    Journal of Mathematical Sciences, 2019, 241 (3) : 290 - 305
  • [27] BOUNDARY BEHAVIOR OF SOLUTIONS TO THE PARABOLIC p-LAPLACE EQUATION
    Avelin, Benny
    Kuusi, Tuomo
    Nystrom, Kaj
    ANALYSIS & PDE, 2019, 12 (01): : 1 - 42
  • [28] Besov Estimates for Weak Solutions of the Parabolic p-Laplacian Equations
    Rumeng Ma
    Fengping Yao
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3839 - 3859
  • [29] On Weak Solutions to Parabolic Problem Involving the Fractional p-Laplacian Via Young Measures
    Talibi, Ihya
    Balaadich, Farah
    El Boukari, Brahim
    El Ghordaf, Jalila
    ANNALES MATHEMATICAE SILESIANAE, 2024,
  • [30] Regularity of Weak Solutions for Nonlinear Parabolic Problem with p(x)-Growth
    Fu, Yongqiang
    Xiang, Mingqi
    Pan, Ning
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2012, (04) : 1 - 26