Equivalence of viscosity and weak solutions for a p-parabolic equation

被引:7
|
作者
Siltakoski, Jarkko [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
关键词
Comparison principle; Gradient term; Parabolic p-Laplacian; Viscosity solution; Weak solution; SUPERSOLUTIONS; REGULARITY; BOUNDARY; MAXIMUM;
D O I
10.1007/s00028-020-00666-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the relationship of viscosity and weak solutions to the equation partial derivative(t)u - Delta(p)u = f (Du), where p > 1 and f is an element of C(R-N) satisfies suitable assumptions. Our main result is that bounded viscosity supersolutions coincide with bounded lower semicontinuous weak supersolutions. Moreover, we prove the lower semicontinuity of weak supersolutions when p >= 2.
引用
收藏
页码:2047 / 2080
页数:34
相关论文
共 50 条
  • [1] Equivalence of viscosity and weak solutions for a p-parabolic equation
    Jarkko Siltakoski
    Journal of Evolution Equations, 2021, 21 : 2047 - 2080
  • [2] Equivalence between viscosity and weak solutions for the parabolic equations with nonstandard growth
    Fang, Yuzhou
    Zhang, Chao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (14) : 8430 - 8449
  • [3] Equivalence of viscosity and weak solutions for the p(x)-Laplacian
    Juutinen, Petri
    Lukkari, Teemu
    Parviainen, Mikko
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (06): : 1471 - 1487
  • [4] Equivalence of weak and viscosity solutions for the nonhomogeneous double phase equation
    Fang, Yuzhou
    Radulescu, Vicentiu D.
    Zhang, Chao
    MATHEMATISCHE ANNALEN, 2024, 388 (03) : 2519 - 2559
  • [5] The tusk condition and Petrovskii criterion for the normalized p-parabolic equation
    Bjorn, Anders
    Bjorn, Jana
    Parviainen, Mikko
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2019, 100 (02): : 623 - 643
  • [6] p-parabolic Approximation of Total Variation Flow Solutions
    Gianazza, Ugo
    Klaus, Colin
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2019, 68 (05) : 1519 - 1550
  • [7] Equivalence between distributional and viscosity solutions for the double-phase equation
    Fang, Yuzhou
    Zhang, Chao
    ADVANCES IN CALCULUS OF VARIATIONS, 2022, 15 (04) : 811 - 829
  • [8] Equivalence and regularity of weak and viscosity solutions for the anisotropic p(<middle dot>)-Laplacian
    Ochoa, Pablo
    Valverde, Federico Ramos
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (05):
  • [9] Existence and Uniqueness of Weak Solutions to the p-biharmonic Parabolic Equation
    Guo Jin-yong
    Gao Wen-jie
    CommunicationsinMathematicalResearch, 2013, 29 (03) : 261 - 270
  • [10] Viscosity Solutions to a Parabolic Inhomogeneous Equation Associated with Infinity Laplacian
    Fang LIU
    Xiao Ping YANG
    ActaMathematicaSinica(EnglishSeries), 2015, 31 (02) : 255 - 271