The cotangent complex and Thom spectra

被引:0
作者
Rasekh, Nima [1 ]
Stonek, Bruno [2 ]
机构
[1] Ecole Polytech Fed Lausanne, SV BMI UPHESS, Stn 8, CH-1015 Lausanne, Switzerland
[2] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
来源
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG | 2020年 / 90卷 / 02期
关键词
Cotangent complex; Structured ring spectra; Thom spectra; Higher category theory; Goodwillie calculus; HOMOLOGY; COHOMOLOGY;
D O I
10.1007/s12188-020-00226-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The cotangent complex of a map of commutative rings is a central object in deformation theory. Since the 1990s, it has been generalized to the homotopical setting of E-infinity-ring spectra in various ways. In this work we first establish, in the context of infinity-categories and using Goodwillie's calculus of functors, that various definitions of the cotangent complex of a map of E-infinity-ring spectra that exist in the literature are equivalent. We then turn our attention to a specific example. Let R be an E-infinity-ring spectrum and Pic(R) denote its Picard E8-group. Let M f denote the Thom E-infinity- R-algebra of a map of E-infinity-groups f : G. Pic(R); examples of M f are given by various flavors of cobordism spectra. We prove that the cotangent complex of R -> M f is equivalent to the smash product of M f and the connective spectrum associated to G.
引用
收藏
页码:229 / 252
页数:24
相关论文
共 25 条
[1]   Parametrized spectra, multiplicative Thom spectra and the twisted Umkehr map [J].
Ando, Matthew ;
Blumberg, Andrew J. ;
Gepner, David .
GEOMETRY & TOPOLOGY, 2018, 22 (07) :3761-3825
[2]   An ∞-categorical approach to R-line bundles, R-module Thom spectra, and twisted R-homology [J].
Ando, Matthew ;
Blumberg, Andrew J. ;
Gepner, David ;
Hopkins, Michael J. ;
Rezk, Charles .
JOURNAL OF TOPOLOGY, 2014, 7 (03) :869-893
[3]  
Andru, 1967, LECT NOTES MATH
[4]  
Angeltveit V, 2009, Geom. Topol. Monogr., V16, P1
[5]  
[Anonymous], 2009, Higher topos theory
[6]  
[Anonymous], 2003, Reprints in Theory and Applications of Categories
[7]   A simple universal property of Thom ring spectra [J].
Antolin-Camarena, Omar ;
Barthel, Tobias .
JOURNAL OF TOPOLOGY, 2019, 12 (01) :56-78
[8]   Homology and cohomology of E∞ ring spectra [J].
Basterra, M ;
Mandell, MA .
MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (04) :903-944
[9]   Andre-Quillen cohomology of commutative S-algebras [J].
Basterra, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 144 (02) :111-143
[10]   Homology of En ring spectra and iterated THH [J].
Basterra, Maria ;
Mandell, Michael A. .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2011, 11 (02) :939-981