Agrivoltaics provide mutual benefits across the food-energy-water nexus in drylands

被引:423
作者
Barron-Gafford, Greg A. [1 ,2 ]
Pavao-Zuckerman, Mitchell A. [3 ]
Minor, Rebecca L. [1 ,2 ]
Sutter, Leland F. [1 ,2 ]
Barnett-Moreno, Isaiah [1 ,2 ]
Blackett, Daniel T. [1 ,2 ]
Thompson, Moses [1 ,4 ]
Dimond, Kirk [5 ]
Gerlak, Andrea K. [1 ]
Nabhan, Gary P. [6 ]
Macknick, Jordan E. [7 ]
机构
[1] Univ Arizona, Sch Geog & Dev, Tucson, AZ 85721 USA
[2] Univ Arizona, Biosphere 2, Off Res Dev & Innovat, Tucson, AZ 85721 USA
[3] Univ Maryland, Dept Environm Sci & Technol, College Pk, MD 20742 USA
[4] Tucson Unified Sch Dist, Tucson, AZ USA
[5] Univ Arizona, Sch Landscape Architecture & Planning, Tucson, AZ USA
[6] Univ Arizona, Southwest Ctr, Tucson, AZ USA
[7] Natl Renewable Energy Lab, Energy Anal & Decis Support, Golden, CO USA
基金
美国国家科学基金会;
关键词
CLIMATE-CHANGE; PHOTOVOLTAIC PANELS; USE EFFICIENCY; CHANGE IMPACTS; PARTIAL SHADE; POWER-PLANTS; LAND-USE; TEMPERATURE; LANDSCAPES; ECOSYSTEM;
D O I
10.1038/s41893-019-0364-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The vulnerabilities of our food, energy and water systems to projected climatic change make building resilience in renewable energy and food production a fundamental challenge. We investigate a novel approach to solve this problem by creating a hybrid of colocated agriculture and solar photovoltaic (PV) infrastructure. We take an integrative approach-monitoring micro-climatic conditions, PV panel temperature, soil moisture and irrigation water use, plant ecophysiological function and plant biomass production within this 'agrivoltaics' ecosystem and in traditional PV installations and agricultural settings to quantify trade-offs. We find that shading by the PV panels provides multiple additive and synergistic benefits, including reduced plant drought stress, greater food production and reduced PV panel heat stress. The results presented here provide a foundation and motivation for future explorations towards the resilience of food and energy systems under the future projected increased environmental stress involving heat and drought.
引用
收藏
页码:848 / 855
页数:8
相关论文
共 83 条
  • [71] Robust negative impacts of climate change on African agriculture
    Schlenker, Wolfram
    Lobell, David B.
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2010, 5 (01):
  • [72] Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes - a review
    Schmidt, Martin
    Jochheim, Hubert
    Kersebaum, Kurt-Christian
    Lischeid, Gunnar
    Nendel, Claas
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2017, 232 : 659 - 671
  • [73] Solecki WD., 2005, Environmental Hazards, V6, P39, DOI [10.1016/j.hazards.2004.12.002, DOI 10.1016/J.HAZARDS.2004.12.002]
  • [74] Improving city life: options for ecological restoration in urban landscapes and how these might influence interactions between people and nature
    Standish, Rachel J.
    Hobbs, Richard J.
    Miller, James R.
    [J]. LANDSCAPE ECOLOGY, 2013, 28 (06) : 1213 - 1221
  • [75] Energy Sprawl Is the Largest Driver of Land Use Change in United States
    Trainor, Anne M.
    McDonald, Robert I.
    Fargione, Joseph
    [J]. PLOS ONE, 2016, 11 (09):
  • [76] Tumbo S. D., 2012, African Crop Science Journal, V20, P453
  • [77] Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model
    Turner, Sean W. D.
    Ng, Jia Yi
    Galelli, Stefano
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 590 : 663 - 675
  • [78] US Energy Information Administration, 2016, JUN 2016 MONTHL EN R
  • [79] Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops
    Valle, B.
    Simonneau, T.
    Sourd, F.
    Pechier, P.
    Hamard, P.
    Frisson, T.
    Ryckewaert, M.
    Christophe, A.
    [J]. APPLIED ENERGY, 2017, 206 : 1495 - 1507
  • [80] van Vliet MTH, 2016, NAT CLIM CHANGE, V6, P375, DOI [10.1038/NCLIMATE2903, 10.1038/nclimate2903]