Nanocrystalline Cu-Ce-Zr mixed oxide catalysts for water-gas shift: Carbon nanofibers as dispersing agent for the mixed oxide particles

被引:27
作者
Huber, Florian
Yu, Zhixin
Walmsley, John C.
Chen, De
Venvik, Hilde J. [1 ]
Holmen, Anders
机构
[1] Norwegian Univ Sci & Technol, Dept Chem Engn, NTNU, N-7491 Trondheim, Norway
[2] SINTEF Mat & Chem, N-7465 Trondheim, Norway
关键词
carbon nanofibers; dispersing agent; Cu; Ce; Zr mixed metal oxides; nanocomposites; homogeneous co-precipitation; water-gas shift;
D O I
10.1016/j.apcatb.2006.08.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanocomposite catalysts containing carbon nanofiber (CNF) and Cu-Ce-Zr mixed metal oxide (MMO) have been prepared by homogeneous co-precipitation with urea. The water-as shift (WGS) reaction has been used as test reaction. The CNIF-containing nanocomposite catalysts exhibit similar overall catalytic activity and stability as the corresponding CNF-free catalyst. Thirteen weight percent of the MMO could be replaced by CNF without decreasing the overall activity and stability of the catalyst. The specific activity of the nanocomposites based on the total metal oxide content is similar or higher than the activity of the CNF-free material, depending on the CNF content. Similar activation energies are, however, obtained for the CNF-free and CNF-containing materials. We cannot exclude that the CNF material acts as reaction promoter under certain conditions, but suggest that the impact of CNF addition on the precipitation of the mixed oxide particles, and hence the catalytic activity relative to the CNF-free MMO, should also be considered. CNF may be regarded as inert dispersing agent material improving the precipitation of the MMO under conditions where the co-precipitation of the MMO precursors does not result in materials with high Surface area. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:7 / 15
页数:9
相关论文
共 45 条
[1]   Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction-control of size and morphology [J].
Adachi-Pagano, M ;
Forano, C ;
Besse, JP .
JOURNAL OF MATERIALS CHEMISTRY, 2003, 13 (08) :1988-1993
[2]   Influence of the preparation method on the performance of CuO-CeO2 catalysts for the selective oxidation of CO [J].
Avgouropoulos, G ;
Ioannides, T ;
Matralis, H .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2005, 56 (1-2) :87-93
[3]   THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS [J].
BARRETT, EP ;
JOYNER, LG ;
HALENDA, PP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) :373-380
[4]   Studies on Cu/CeO2:: A new NO reduction catalyst [J].
Bera, P ;
Aruna, ST ;
Patil, KC ;
Hegde, MS .
JOURNAL OF CATALYSIS, 1999, 186 (01) :36-44
[5]   Promoting effect of CeO2 in a Cu/CeO2 catalyst:: lowering of redox potentials of Cu species in the CeO2 matrix [J].
Bera, P ;
Mitra, S ;
Sampath, S ;
Hegde, MS .
CHEMICAL COMMUNICATIONS, 2001, (10) :927-928
[6]   Preparation of Fischer-Tropsch cobalt catalysts supported on carbon nanofibers and silica using homogeneous deposition-precipitation [J].
Bezemer, GL ;
Radstake, PB ;
Koot, V ;
van Dillen, AJ ;
Geus, JW ;
de Jong, KP .
JOURNAL OF CATALYSIS, 2006, 237 (02) :291-302
[7]   Nano-structured CeO2 supported Cu-Pd bimetallic catalysts for the oxygen-assisted water-gas-shift reaction [J].
Bickford, ES ;
Velu, S ;
Song, CS .
CATALYSIS TODAY, 2005, 99 (3-4) :347-357
[8]  
*BRUK AN XRAY SYST, DIFFR WIN CRYS CRYST
[9]   Onset of heterogeneous crystal nucleation in colloidal suspensions [J].
Cacciuto, A ;
Auer, S ;
Frenkel, D .
NATURE, 2004, 428 (6981) :404-406
[10]   Carbon nanofibers: Catalytic synthesis and applications [J].
De Jong, KP ;
Geus, JW .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2000, 42 (04) :481-510