Modelling evaporation using an artificial neural network algorithm

被引:165
|
作者
Sudheer, KP [1 ]
Gosain, AK
Rangan, DM
Saheb, SM
机构
[1] Natl Inst Hydrol, Delta Reg Ctr, Siddartha Nagar 533003, Kakinada, India
[2] Indian Inst Technol, Dept Civil Engn, New Delhi 110016, India
关键词
artificial neural network; evaporation; hydrologic modelling;
D O I
10.1002/hyp.1096
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
This paper investigates the prediction of Class A pan evaporation using the artificial neural network (ANN) technique. The ANN back propagation algorithm has been evaluated for its applicability for predicting evaporation from minimum climatic data. Four combinations of input data were considered and the resulting values of evaporation were analysed and compared with those of existing models. The results from this study suggest that the neural computing technique could be employed successfully in modelling the evaporation process from the available climatic data set. However, an analysis of the residuals from the ANN models developed revealed that the models showed significant error in predictions during the validation, implying loss of generalization properties of ANN models unless trained carefully. The study indicated that evaporation values could be reasonably estimated using temperature data only through the ANN technique. This would be of much use in instances where data availability is limited. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:3189 / 3202
页数:14
相关论文
共 50 条
  • [1] EVAPORATION MODELLING BY MULTIPLE LINEAR REGRESSION AND ARTIFICIAL NEURAL NETWORK
    Panwar, Rajdev
    Kumar, Pankaj
    Kumar, Devendra
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2016, 12 (01): : 289 - 294
  • [2] Predicting evaporation with optimized artificial neural network using multi-objective salp swarm algorithm
    Ehteram, Mohammad
    Panahi, Fatemeh
    Ahmed, Ali Najah
    Huang, Yuk Feng
    Kumar, Pavitra
    Elshafie, Ahmed
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (07) : 10675 - 10701
  • [3] Predicting evaporation with optimized artificial neural network using multi-objective salp swarm algorithm
    Mohammad Ehteram
    Fatemeh Panahi
    Ali Najah Ahmed
    Yuk Feng Huang
    Pavitra Kumar
    Ahmed Elshafie
    Environmental Science and Pollution Research, 2022, 29 : 10675 - 10701
  • [4] Modelling of chemical processes using artificial neural network
    Verma, Rashi
    Besta, Chandra Shekar
    INDIAN CHEMICAL ENGINEER, 2024, 66 (01) : 84 - 105
  • [5] Modelling nitrate pollution of groundwater using artificial neural network and genetic algorithm in an arid zone
    Eslamian, Saeid
    Lavaei, Niloufar
    International Journal of Water, 2009, 5 (02) : 194 - 203
  • [6] MODELLING STUDIES BY APPLICATION OF ARTIFICIAL NEURAL NETWORK USING MATLAB
    Arjun, K. S.
    Aneesh, K.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2015, 10 (11) : 1477 - 1486
  • [7] Corrosion current density modelling using artificial neural network
    Verma, Shwctambara
    Sengupta, Somesh
    Vardharajan, S.
    Tomar, R. K.
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE CONFLUENCE 2018 ON CLOUD COMPUTING, DATA SCIENCE AND ENGINEERING, 2018, : 88 - 93
  • [8] Dynamic Modelling of Supercapacitor Using Artificial Neural Network Technique
    Danila, Elena
    Livint, Gheorghe
    Lucache, Dorin Dumitru
    2014 INTERNATIONAL CONFERENCE AND EXPOSITION ON ELECTRICAL AND POWER ENGINEERING (EPE), 2014, : 642 - 645
  • [9] Artificial neural network training using a multi selection artificial algae algorithm
    Karakoyun, Murat
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2024, 53
  • [10] Supplier selection using artificial neural network and genetic algorithm
    Asthana, Nitesh
    Gupta, Manish
    INTERNATIONAL JOURNAL OF INDIAN CULTURE AND BUSINESS MANAGEMENT, 2015, 11 (04) : 457 - 472