New constructions of resilient Boolean functions with maximal nonlinearity

被引:0
|
作者
Tarannikov, Y [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Mech & Math Dept, Moscow 119899, Russia
来源
FAST SOFTWARE ENCRYPTION | 2002年 / 2355卷
关键词
stream cipher; Boolean function; nonlinear combining function; correlation-immunity; resiliency; nonlinearity;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we develop a technique that allows to obtain new effective constructions of highly resilient Boolean functions with high nonlinearity. In particular, we prove that the upper bound 2(n-1) - 2(m+1) on nonlinearity of m-resilient n-variable Boolean functions is achieved for 0.6n - 1 less than or equal to m less than or equal to n - 2.
引用
收藏
页码:66 / 77
页数:12
相关论文
共 50 条
  • [21] Improving High-Meets-Low technique to generate odd-variable resilient Boolean functions with currently best nonlinearity
    Sun, Yujuan
    DISCRETE MATHEMATICS, 2021, 344 (02)
  • [22] A construction of resilient functions with high nonlinearity
    Johansson, T
    Pasalic, E
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (02) : 494 - 501
  • [23] Constructions of resilient rotation symmetric Boolean functions on given number of variables
    Du, Jiao
    Wen, Qiaoyan
    Zhang, Jie
    Pang, Shanqi
    IET INFORMATION SECURITY, 2014, 8 (05) : 265 - 272
  • [24] Spectral domain analysis of correlation immune and resilient Boolean functions
    Carlet, C
    Sarkar, P
    FINITE FIELDS AND THEIR APPLICATIONS, 2002, 8 (01) : 120 - 130
  • [25] Constructions of balanced Boolean functions with high nonlinearity and high algebraic degree
    Sun, Yu Juan
    Li, Lu Yang
    Yang, Bo
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (09) : 1832 - 1839
  • [26] Asymptotic Nonlinearity of Boolean Functions
    François Rodier
    Designs, Codes and Cryptography, 2006, 40 : 59 - 70
  • [27] Asymptotic nonlinearity of Boolean functions
    Rodier, Francois
    DESIGNS CODES AND CRYPTOGRAPHY, 2006, 40 (01) : 59 - 70
  • [28] New constructions of resilient functions with strictly almost optimal nonlinearity via non-overlap spectra functions
    Wei, Yongzhuang
    Pasalic, Enes
    Zhang, Fengrong
    Wu, Wenling
    Wang, Cheng-xiang
    INFORMATION SCIENCES, 2017, 415 : 377 - 396
  • [29] Survey on the Nonlinearity of Boolean Functions
    Bharti
    PROCEEDINGS OF THE 2016 IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2016, : 882 - 884
  • [30] Construction of Odd-Variable Resilient Boolean Functions with Optimal Degree
    Fu, Shaojing
    Li, Chao
    Matsuura, Kanta
    Qu, Longjiang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2011, E94A (01) : 265 - 267