On Faltings parabolic theta functions

被引:0
|
作者
Amrutiya, Sanjay [1 ]
机构
[1] Indian Inst Technol Gandhinagar, Dept Math, Gandhinagar 382355, India
关键词
Moduli of parabolic bundles; Theta functions; VECTOR-BUNDLES; MODULI;
D O I
10.1007/s00013-016-0873-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we prove that the Faltings theta functions on moduli of parabolic bundles over a smooth projective curve can be used to give an explicit scheme-theoretic projective embedding.
引用
收藏
页码:229 / 235
页数:7
相关论文
共 50 条
  • [31] Differential equations for septic theta functions
    Huber, Tim
    Lara, Danny
    RAMANUJAN JOURNAL, 2015, 38 (01) : 211 - 226
  • [32] Generalized addition formulae for theta functions
    González, EG
    González-Martínez, C
    Geometry of Riemann Surfaces and Abelian Varieties, 2006, 397 : 89 - 104
  • [33] Note on trigonometric expansions of theta functions
    Chouikha, AR
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 153 (1-2) : 119 - 125
  • [34] Binary theta functions and Borcherds products
    Schwagenscheidt, Markus
    Williams, Brandon
    JOURNAL OF NUMBER THEORY, 2023, 249 : 441 - 461
  • [35] Splitting Appell functions in terms of single quotients of theta functions
    Mortenson, Eric T.
    Urazov, Dilshod
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (01)
  • [36] ASYMPTOTIC EXPANSIONS OF CERTAIN PARTIAL THETA FUNCTIONS
    Berndt, Bruce C.
    Kim, Byungchan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (11) : 3779 - 3788
  • [37] Logarithms of theta functions on the upper half space
    Ito, Hiroshi
    JOURNAL OF NUMBER THEORY, 2020, 209 : 421 - 450
  • [38] Theta Functions and Adiabatic Curvature on an Elliptic Curve
    Chang, Ching-Hao
    Cheng, Jih-Hsin
    Tsai, I-Hsun
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (03)
  • [39] Discrete Gaussian Distributions via Theta Functions
    Agostini, Daniele
    Amendola, Carlos
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2019, 3 (01) : 1 - 30
  • [40] On the fourth moment of theta functions at their central point
    Barry, Amadou Diogo
    Louboutin, Stephane R.
    ARITHMETIC, GEOMETRY, CRYPTOGRAPHY AND CODING THEORY, 2009, 487 : 1 - 7